Характеристика и назначение
Системы поддержки принятия решений и соответствующая им информационная технология появились усилиями в основном американских ученых в конце 70-х – начале 80-х гг., чему способствовали широкое распространение персональных компьютеров, стандартных пакетов прикладных программ, а также успехи в создании систем искусственного интеллекта.
Главной особенностью информационной технологии поддержки принятия решений является качественно новый метод организации взаимодействия человека и компьютера. Выработка решения, что является основной целью этой технологии, происходит в результате итерационного процесса (рис. 2.5), в котором участвуют:
система поддержки принятия решений в роли вычислительного звена и объекта управления;
человек как управляющее звено, задающее входные данные и оценивающее полученный результат вычислений на компьютере.
Рис. 2.5. Информационная технология поддержки принятия решений как итерационный процесс
Окончание итерационного процесса происходит по воле человека. В этом случае можно говорить о способности информационной системы совместно с пользователем создавать новую информацию для принятия решений.
Дополнительно к этой особенности информационной технологии поддержки принятия решений можно указать еще ряд ее отличительных характеристик:
ориентация на решение плохо структурированных (формализованных) задач;
сочетание традиционных методов доступа и обработки компьютерных данных с возможностями математических моделей и методами решения задач на их основе;
направленность на непрофессионального пользователя компьютера;
высокая адаптивность, обеспечивающая возможность приспосабливаться к особенностям имеющегося технического и программного обеспечения, а также требованиям пользователя.
Информационная технология поддержки принятия решений может использоваться на любом уровне управления. Кроме того, решения, принимаемые на различных уровнях управления, часто должны координироваться. Поэтому важной функцией и систем, и технологий является координация лиц, принимающих решения как на разных уровнях управления, так и на одном уровне.
Основные компоненты
Рассмотрим структуру системы поддержки принятия решений (рис. 2.6), а также функции составляющих ее блоков, которые определяют основные технологические операции.
Рис. 2.6. Основные компоненты информационной технологии поддержки принятия решений
В состав системы поддержки принятия решений входят три главных компонента: база данных, база моделей и программная подсистема, которая состоит из системы управления базой данных (СУБД), системы управления базой моделей (СУБМ) и системы управления интерфейсом между пользователем и компьютером.
База данных играет в информационной технологии поддержки принятия решений важную роль. Данные могут использоваться непосредственно пользователем для расчетов при помощи математических моделей. Рассмотрим источники данных и их особенности.
1. Часть данных поступает от информационной системы операционного уровня. Чтобы использовать их эффективно, эти данные должны быть предварительно обработаны. Для этого имеются две возможности:
использовать для обработки данных об операциях фирмы систему управления базой данных, входящую в состав системы поддержки принятия решений;
сделать обработку за пределами системы поддержки принятия решений, создав для этого специальную базу данных. Этот вариант более предпочтителен для фирм, производящих большое количество коммерческих операций. Обработанные данные об операциях фирмы образуют файлы, которые для повышения надежности и быстроты доступа хранятся за пределами системы поддержки принятия решений.
2. Помимо данных об операциях фирмы для функционирования системы поддержки принятия решений требуются и другие внутренние данные, например данные о движении персонала, инженерные данные и т.п., которые должны быть своевременно собраны, введены и поддержаны.
3. Важное значение, особенно для поддержки принятия решений на верхних уровнях управления, имеют данные из внешних источников. В числе необходимых внешних данных следует указать данные о конкурентах, национальной и мировой экономике. В отличие от внутренних данных внешние данные обычно приобретаются у специализирующихся на их сборе организаций.
4. В настоящее время широко исследуется вопрос о включении в базу данных еще одного источника данных – документов, включающих в себя записи, письма, контракты, приказы и т.п. Если содержание этих документов будет записано в памяти и затем обработано по некоторым ключевым характеристикам (поставщикам, потребителям, датам, видам услуг и др.), то система получит новый мощный источник информации.
Система управления базой данных должна обладать следующими возможностями:
составление комбинаций данных, получаемых из различных источников, посредством использования процедур агрегирования и фильтрации;
быстрое прибавление или исключение того или иного источника данных;
построение логической структуры данных в терминах пользователя;
использование и манипулирование неофициальными данными для экспериментальной проверки рабочих альтернатив пользователя;
обеспечение полной логической независимости этой базы данных от других операционных баз данных, функционирующих в рамках фирмы.
База моделей. Целью создания моделей являются описание и оптимизация некоторого объекта или процесса. Использование моделей обеспечивает проведение анализа в системах поддержки принятия решений. Модели, базируясь на математической интерпретации проблемы, при помощи определенных алгоритмов способствуют нахождению информации, полезной для принятия правильных решений.
Пример. Модель линейного программирования дает возможность определить наиболее выгодную производственную программу выпуска нескольких видов продукции при заданных ограничениях на ресурсы.
Использование моделей в составе информационных систем началось с применения статистических методов и методов финансового анализа, которые реализовывались командами обычных алгоритмических языков. Позже были созданы специальные языки, позволяющие моделировать ситуации типа “что будет, если?” или “как сделать, чтобы?”. Такие языки, созданные специально для построения моделей, дают возможность построения моделей определенного типа, обеспечивающих нахождение решения при гибком изменении переменных.
Существует множество типов моделей и способов их классификации, например, по цели использования, области возможных приложений, способу оценки переменных и т. п.
По цели использования модели подразделяются на оптимизационные, связанные с нахождением точек минимума или максимума некоторых показателей (например, управляющие часто хотят знать, какие их действия ведут к максимизации прибыли или минимизации затрат), и описательные, описывающие поведение некоторой системы и не предназначенные для целей управления (оптимизации).
По способу оценки модели классифицируются на детерминированные, использующие оценку переменных одним числом при конкретных значениях исходных данных, и стохастические, оценивающие переменные несколькими параметрами, так как исходные данные заданы вероятностными характеристиками.
Детерминированные модели более популярны, чем стохастические, потому что они менее дорогие, их легче строить и использовать. К тому же часто с их помощью получается вполне достаточная информация для принятия решения.
По области возможных приложений модели разбиваются на специализированные, предназначенные для использования только одной системой, и универсальные – для использования несколькими системами.
Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большей точностью.
В системах поддержки принятия решения база моделей состоит из стратегических, тактических и оперативных моделей, а также математических моделей в виде совокупности модельных блоков, модулей и процедур, используемых как элементы для их построения (см. рис. 2.6).
Стратегические модели используются на высших уровнях управления для установления целей организации, объемов ресурсов, необходимых для их достижения, а также политики приобретения и использования этих ресурсов. Они могут быть также полезны при выборе вариантов размещения предприятий, прогнозировании политики конкурентов и т.п. Для стратегических моделей характерны значительная широта охвата, множество переменных, представление данных в сжатой агрегированной форме. Часто эти данные базируются на внешних источниках и могут иметь субъективный характер. Горизонт планирования в стратегических моделях, как правило, измеряется в годах. Эти модели обычно детерминированные, описательные, специализированные для использования на одной определенной фирме.
Тактические модели применяются управляющими (менеджерами) среднего уровня для распределения и контроля использования имеющихся ресурсов. Среди возможных сфер их использования следует указать: финансовое планирование, планирование требований к работникам, планирование увеличения продаж, построение схем компоновки предприятий. Эти модели применимы обычно лишь к отдельным частям фирмы (например, к системе производства и сбыта) и могут также включать в себя агрегированные показатели. Временной горизонт, охватываемый тактическими моделями, – от одного месяца до двух лет. Здесь также могут потребоваться данные из внешних источников, но основное внимание при реализации данных моделей должно быть уделено внутренним данным фирмы. Обычно тактические модели реализуются как детерминированные, оптимизационные и универсальные.
Оперативные модели используются на низших уровнях управления для поддержки принятия оперативных решений с горизонтом, измеряемым днями и неделями. Возможные применения этих моделей включают в себя ведение дебиторских счетов и кредитных расчетов, календарное производственное планирование, управление запасами и т.д. Оперативные модели обычно используют для расчетов внутрифирменные данные. Они, как правило, детерминированные, оптимизационные и универсальные (т.е. могут быть использованы в различных организациях).
Математические модели состоят из совокупности модельных блоков, модулей и процедур, реализующих математические методы. Сюда могут входить процедуры линейного программирования, статистического анализа временных рядов, регрессионного анализа и т.п. – от простейших процедур до сложных ППП. Модельные блоки, модули и процедуры могут использоваться как поодиночке, так и комплексно для построения и поддержания моделей.
Система управления базой моделей должна обладать следующими возможностями: создавать новые модели или изменять существующие, поддерживать и обновлять параметры моделей, манипулировать моделями.
Система управления интерфейсом. Эффективность и гибкость информационной технологии во многом зависят от характеристик интерфейса системы поддержки принятия решений. Интерфейс определяет: язык пользователя; язык сообщений компьютера, организующий диалог на экране дисплея; знания пользователя.
Язык пользователя – это те действия, которые пользователь производит в отношении системы путем использования возможностей клавиатуры; электронных карандашей, пишущих на экране; джойстика; “мыши”; команд, подаваемых голосом, и т.п. Наиболее простой формой языка пользователя является создание форм входных и выходных документов. Получив входную форму (документ), пользователь заполняет его необходимыми данными и вводит в компьютер. Система поддержки принятия решений производит необходимый анализ и выдает результаты в виде выходного документа установленной формы.
Значительно возросла за последнее время популярность визуального интерфейса. С помощью манипулятора “мышь” пользователь выбирает представленные ему на экране в форме картинок объекты и команды, реализуя таким образом свои действия.
Управление компьютером при помощи человеческого голоса – самая простая и поэтому самая желанная форма языка пользователя. Она еще недостаточно разработана и поэтому малопопулярна. Существующие разработки требуют от пользователя серьезных ограничений: определенного набора слов и выражений; специальной надстройки, учитывающей особенности голоса пользователя; управления в виде дискретных команд, а не в виде обычной гладкой речи. Технология этого подхода интенсивно совершенствуется, и в ближайшем будущем можно ожидать появления систем поддержки принятия решений, использующих речевой ввод информации.
Язык сообщений – это то, что пользователь видит на экране дисплея (символы, графика, цвет), данные, полученные на принтере, звуковые выходные сигналы и т.п. Важным измерителем эффективности используемого интерфейса является выбранная форма диалога между пользователем и системой. В настоящее время наиболее распространены следующие формы диалога: запросно-ответный режим, командный режим, режим меню, режим заполнения пропусков в выражениях, предлагаемых компьютером.
Каждая форма имеет свои достоинства и недостатки и может быть использована в зависимости от типа задачи, особенностей пользователя и принимаемого решения.
Долгое время единственной реализацией языка сообщений был отпечатанный или выведенный на экран дисплея отчет или сообщение. Теперь появилась новая возможность представления выходных данных – машинная графика. Она дает возможность создавать на экране и бумаге цветные графические изображения в трехмерном виде. Использование машинной графики, значительно повышающее наглядность и интерпретируемость выходных данных, становится все более популярным в информационной технологии поддержки принятия решений.
За последние несколько лет наметилось новое направление, развивающее машинную графику,— мультипликация. Мультипликация оказывается особенно эффективной для интерпретации выходных данных систем поддержки принятия решений, связанных с моделированием физических систем и объектов.
Пример. Система поддержки принятия решений, предназначенная для обслуживания клиентов в банке, с помощью мультипликационных моделей может реально просмотреть различные варианты организации обслуживания в зависимости от потока посетителей, допустимой длины очереди, количества пунктов обслуживания и т.п.
В ближайшие годы следует ожидать использования в качестве языка сообщений человеческого голоса. Сейчас эта форма применяется в системе поддержки принятия решений сферы финансов, где в процессе генерации чрезвычайных отчетов голосом поясняются причины исключительности той или иной позиции.
Совершенствование интерфейса системы поддержки принятия решений определяется успехами в развитии каждого из трех указанных компонентов. Интерфейс должен обладать следующими возможностями:
манипулировать различными формами диалога, изменяя их в процессе принятия решения по выбору пользователя;
передавать данные системе различными способами;
получать данные от различных устройств системы в различном формате;
гибко поддерживать (оказывать помощь по запросу, подсказывать) знания пользователя.
Программный продукт Project Expert фирмы Про-Инвест-Консалтинг является популярным на российском рынке инструментом стратегического планирования и контроля, анализа эффективности деятельности предприятия. Он отвечает современным стандартам быстродействия, операционной совместимости, обмена данными, обеспечивает групповую работу в сети.
Project Expert позволяет в короткий срок решить следующие задачи:
детально описать и спроектировать деятельность любого предприятия с учетом изменения параметров внешней среды (инфляция, налоги, курсы валют);
разработать план развития предприятия или реализации инвестиционного проекта, стратегию маркетинга и стратегию производства, обеспечивающую рациональное использование материальных, людских и финансовых ресурсов;
определить схему финансирования предприятия;
апробировать различные сценарии развития предприятия, варьируя значения факторов, способных повлиять на его финансовые результаты;
подготовить финансовые отчеты (отчет о движении финансовых средств, баланс, отчет о прибылях и убытках, отчет об использовании прибыли) и бизнес-план инвестиционного проекта, полностью соответствующие международным требованиям, на русском и английском языках;
провести всесторонний анализ предприятия, в том числе анализ общей эффективности, анализ чувствительности, анализ денежных потоков, анализ финансового состояния и доходности предприятия с помощью трех десятков автоматически исчисляемых показателей.
Программный продукт Forecast Expert, также разработанный фирмой Про-Инвест-Консалтинг, представляет собой универсальную систему прикладного прогнозирования. Forecast Expert предназначен для построения прогноза временного ряда с помощью модели авторегрессии и интегрированного скользящего среднего. В качестве прогнозируемых могут выступать параметры как сфер производства и обращения – цены мирового рынка, спрос на изделия, объемы закупок комплектующих и производственных запасов при увеличении объема производства, цены комплектующих, параметры технологических процессов, так и финансового рынка – цены покупки и продажи акций, деловая активность участников рынка, объем предложений свободных средств инвесторами и многое другое.
Применение Forecast Expert позволяет проанализировать имеющиеся данные и построить прогноз с указанием границ доверительного интервала (при заданной вероятности прогноза) на период времени. Модель определяет степень влияния сезонных факторов и учитывает их при построении прогноза.
Статьи к прочтению:
Наша поддержка курсантов Ульяновского летного училища
Похожие статьи:
-
Понятие системы поддержки принятия решений.
Система поддержки принятия решений или СППР (Decision Support Systems, DSS) — это компьютерная система, которая путем сбора и анализа большого количества…
-
Определение информационной технологии. глобальная, базовая и конкретные информационные технологии
Технология при переводе с греческого (techne) означает искусство, мастерство, умение, а это не что иное, как процессы. Под процессом следует понимать…