БИЛЕТ 1
1.Термин информатика возник в 60-х гг. во Франции для названия области, занимающейся автоматизированной обработкой информации с помощью электронных вычислительных машин. Французский термин образован путем слияния слов “информация” и “автоматика” и означает “информационная автоматика или автоматизированная переработка информации”. В англоязычных странах этому термину соответствует синоним computer science (наука о компьютерной технике).
Существует множество определений информатики, что связано с многогранностью ее функций, возможностей, форм, методов. Одно из наиболее общих определений такое.
Информатика – это область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и их взаимодействием со средой применения.
Часто возникает путаница понятий “информатика” и “кибернетика”. Попытаемся разъяснить их сходство и различие.
Кибернетика – это наука об общих принципах управления в различных системах: технических, биологических, социальных и др.
Информатика занимается изучением процессов преобразования и создания новой информации более широко, практически не решая задачи управления различными объектами, как кибернетика. Информатика появилась благодаря развитию компьютерной техники, базируется на ней и совершенно немыслима без нее. Кибернетика развивается сама по себе и, хотя достаточно активно использует достижения компьютерной техники, совершенно от нее не зависит, т.к. строит различные модели управления объектами.
Задачи информатики состоят в следующем:
-исследование информационных процессов любой природы;
-разработка информационной техники и создание новейшей технологии переработки информации на базе полученных результатов исследования информационных процессов;
-решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах общественной жизни.
Информатика существует не сама по себе, а является комплексной научно-технической дисциплиной, призванной создавать новые информационные техники и технологии для решения проблем в других областях. Комплекс индустрии информатики станет ведущим в информационном обществе. Тенденция к большей информированности в обществе в существенной степени зависит от прогресса информатики как единства науки, техники и производства.
Начальный этап предыстории информатики – освоение человеком развитой устной речи.Членораздельная речь, язык стали специфическим социальным средством хранения и передачи информации.
Второй этап – возникновение письменности.На этом этапе резко возросли возможности хранения информации. Человек получил искусственную внешнюю память. Организация почтовых служб позволила использовать письменность и как средство передачи информации. Кроме того, возникновение письменности было необходимым условием для начала развития наук (вспомним, например, Древнюю Грецию). С этим же этапом, по всей видимости, связано и возникновение понятия «натуральное число». Все народы, обладавшие письменностью, владели понятием числа и пользовались той или иной системой счисления.
Третий этап – книгопечатание. Его можно смело назвать первой информационной технологией. Воспроизведение информации было поставлено на поток, на промышленную основу. По сравнению с предыдущим на этом этапе не столько увеличивалась возможность хранения информации (хотя и здесь был выигрыш: письменный источник – это часто один-единственный экземпляр, печатная книга – это целый тираж экземпляров, а следовательно, и малая вероятность потери информации при хранении), сколько повысилась доступность информации и точность ее воспроизведения.
Четвертый (последний) этап предыстории информатики связан с успехами точных наук (прежде всего математики и физики) и начинающейся научно-технической революцией. Этот этап характеризуется возникновением таких мощных средств связи, как радио, телефон и телеграф, а позднее и телевидение. Появились новые возможности получения и хранения информации – фотография и кино. К ним очень важно добавить разработку методов записи информации на магнитные носители (магнитные ленты, диски).
Билет 2
илет 2
2. Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники.
Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений — за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это прежде всего их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим — к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.
ПЕРВОЕ ПОКОЛЕНИЕ:Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, Сетунь, БЭСМ-2, Раздан. Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.
ВТОРОЕ ПОКОЛЕНИЕ:Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д.
Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.
Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.
ТРЕТЬЕ ПОКОЛЕНИЕ: Элементная база ЭВМ — малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.
Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. Обычные электрические соединения с помощью проводов при этом встраивались в микросхему.. В этот период на рынке появились удобные для пользователя рабочие станции, которые за счет объединения в сеть значительно упростили возможность получения малого времени доступа, обычно присущего большим машинам. Дальнейший прогресс в развитии вычислительной техники был связан с разработкой полупроводниковой памяти, жидкокристаллических экранов и электронной памяти. В конце этого периода произошел коммерческий прорыв в области микроэлектронной технологии.
Четвертое поколение: Элементная база ЭВМ — большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора)—набора программ, которые организуют непрерывную работу машины без вмешательства человека. Таким образом, история развития электроники подошла к созданию персональных компьютеров (ПК). Во второй половине 70-х гг. появилась потребность в компьютерах для одного рабочего места. Первый персональный компьютер создали в апреле 1976 года два друга, Стив Джобе (1955 г. р.) — сотрудник фирмы Atari, и Стефан Возняк (1950 г. р.), работавший на фирме Hewlett-Packard. На базе интегрального 8-битного контроллера жестко запаянной схемы популярной электронной игры, работая вечерами в автомобильном гараже, они сделали простенький программируемый на языке Бейсик игровой компьютер Apple, имевший бешеный успех. В начале 1977 года была зарегистрирована Apple Сотр., и началось производство первого в мире персонального компьютера Apple.
Пятое и последующеепоколение кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:
Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.
Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.
БИЛЕТ 3
Информация (от лат. informatio — осведомление, разъяснение, изложение) — в широком смысле абстрактное понятие, имеющее множество значений, в зависимости от контекста. В узком смысле этого слова — сведения (сообщения, данные) независимо от формы их представления. В настоящее время не существует единого определения термина информация. С точки зрения различных областей знания, данное понятие описывается своим специфическим набором признаков. Информация — совокупность данных, зафиксированных на материальном носителе, сохранённых и распространённых во времени и пространстве.
В то же время никак нельзя называть произведения искусства информацией. Эстетическое, культурологическое понимание термина информация в корне отличается от понимания информации в кибернетике, физике, биологии и т. д.
Органами чувств (приемниками информации) мы принимаем информацию об окружающем мире, в том числе и информацию о произведениях искусства. Но произведения искусства в связи с этим не становятся чистой информацией. Это мы при помощи органов чувств видя произведения искусства воспринимаем информацию о произведениях искусства
Основные виды информации по её форме представления, способам её кодирования и хранения, что имеет наибольшее значение для информатики, это:
- графическая или изобразительная — первый вид, для которого был реализован способ хранения информации об окружающем мире в виде наскальных рисунков, а позднее в виде картин, фотографий, схем, чертежей на бумаге, холсте, мраморе и др. материалах, изображающих картины реального мира;
- звуковая (акустическая) — мир вокруг нас полон звуков и задача их хранения и тиражирования была решена с изобретением звукозаписывающих устройств в 1877 г. (см., например, историю звукозаписи на сайте — http://radiomuseum.ur.ru/index9.html); её разновидностью является музыкальная информация — для этого вида был изобретен способ кодирования с использованием специальных символов, что делает возможным хранение её аналогично графической информации;
- текстовая — способ кодирования речи человека специальными символами — буквами, причем разные народы имеют разные языки и используют различные наборы букв для отображения речи; особенно большое значение этот способ приобрел после изобретения бумаги и книгопечатания;
- числовая — количественная мера объектов и их свойств в окружающем мире; особенно большое значение приобрела с развитием торговли, экономики и денежного обмена; аналогично текстовой информации для её отображения используется метод кодирования специальными символами — цифрами, причем системы кодирования (счисления) могут быть разными;
- видеоинформация — способ сохранения «живых» картин окружающего мира, появившийся с изобретением кино.
Существуют также виды информации, для которых до сих пор не изобретено способов их кодирования и хранения — это тактильная информация, передаваемая ощущениями, органолептическая, передаваемая запахами и вкусами и др
Данные — это совокупность сведений, зафиксированных на определенном носителе в форме, пригодной для постоянного хранения, передачи и обработки. Преобразование и обработка данных позволяет получить информацию.
БИЛЕТ 4
В современном мире роль информатики, средств обработки, передачи, накопления информации неизмеримо возросла. Средства информатики и вычислительной техники сейчас во многом определяют научно-технический потенциал страны, уровень развития ее народного хозяйства, образ жизни и деятельности человека.
Для целенаправленного использования информации ее необходимо собирать, преобразовывать, передавать, накапливать и систематизировать. Все эти процессы, связанные с определенными операциями над информацией, будем называть информационными процессами. Получение и преобразование информации является необходимым условием жизнедеятельности любого организма. Даже простейшие одноклеточные организмы постоянно воспринимают и используют информацию, например о температуре и химическом составе среды для выбора наиболее благоприятных условий существования. Живые существа способны не только воспринимать информацию из окружающей среды с помощью органов чувств, но и обмениваться ею между собой.
Человек также воспринимает информацию с помощью органов чувств, а для обмена информацией между людьми используются языки. За время развития человеческого общества таких языков возникло очень много. Прежде всего, это родные языки (русский, татарский, английский и др.)» на которых говорят многочисленные народы мира. Роль языка для человечества исключительно велика. Без него, без обмена информацией между людьми было бы невозможным возникновение и развитие общества.
Информационные процессы характерны не только для живой природы, человека, общества. Человечеством созданы технические устройства — автоматы, работа которых также связана с процессами получения, передачи и хранения информации. Например, автоматическое устройство, называемое термостатом, воспринимает информацию о температуре помещения и в зависимости от заданного человеком температурного режима включает или отключает отопительные приборы.
Деятельность человека, связанную с процессами получения, преобразования, накопления и передачи информации, называют информационной деятельностью.
В результате научно-технического прогресса человечество создавало все новые средства и способы сбора, хранения, передачи информации. Но важнейшее в информационных процессах — обработка, целенаправленное преобразование информации осуществлялось до недавнего времени исключительно человеком.
Вместе с тем постоянное совершенствование техники, производства привело к резкому возрастанию объема информации, с которой приходится оперировать человеку в процессе его профессиональной деятельности.
Развитие науки, образования обусловило быстрый рост объема информации, знаний человека. Если в начале прошлого века общая сумма человеческих знаний удваивалась приблизительно каждые пятьдесят лет, то в последующие годы — каждые пять лет. Выходом из создавшейся ситуации стало создание компьютеров, которые во много раз ускорили и автоматизировали процесс обработки информации.
В настоящее время компьютеры используются для обработки не только числовой, но и других видов информации. Благодаря этому информатика и вычислительная техника прочно вошли в жизнь современного человека, широко применяются в производстве, проектно-конструкторских работах, бизнесе и многих других отраслях
БИЛЕТ 5
ДОПИЛИ
В каждом компьютере используется некоторая система кодирования символьных данных, сопоставляющая каждому символу — цифре, букве, специальному знаку — определенный двоичный код.
Количество разных символов, которые может различать компьютер, зависит от числа двоичных разрядов, отводимых для кодирования любого символа.
Традиционно для кодирования одного символа используется количество информации, равное 1 байту, то есть I= 1 байт = 8 битов.
Для кодирования одного символа требуется 1 байт информации. Если рассматривать символы как возможные события, то можно вычислить, какое количество различных символов можно закодировать:
N = 2I = 28 = 256
Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и строчные буквы русского и латинского алфавита, цифры, знаки, графические символы и пр.
Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертаниям, а компьютер — по их кодам.
При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение символа преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу с символом, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код символа). Код символа хранится в оперативной памяти компьютера, где занимает один байт.
Компьютеры часто используются для обработки текстовой информации.
илет 6
Системой счисления называется способ изображения чисел с помощью ограниченного набора символов, имеющих определенные количественные значения. Систему счисления образует совокупность правил и приемов представления чисел с помощью набора знаков
Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.
Римская непозиционная система счисления. Самой распространенной из непозиционных систем счисления является римская. В качестве цифр в ней используются: I (1), V (5), X (10), L (50), С (100), D (500), М (1000).
Значение цифры не зависит от ее положения в числе. Например, в числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину — число 10, три числа по 10 в сумме дают 30.
Позиционными называются системы счисления, в которых значение цифры зависит от ее места (позиции) в записи числа. Непозиционными называются системы счисления, в которых значение цифры не зависит от ее места (позиции) в записи числа.
В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения одинаковых цифр, стоящих в соседних позициях числа.
Десятичная система счисления имеет алфавит цифр, который состоит из десяти всем известных, так называемых арабских, цифр, и основание, равное 10, двоичная — две цифры и основание 2, восьмеричная — восемь цифр и основание 8, шестнадцатеричная — шестнадцать цифр (в качестве цифр используются и буквы латинского алфавита) и основание 16
Во всех современных ЭВМ для представления числовой информации применяется двоичная система счисления. Это обусловлено:
- более простой реализацией алгоритмов выполнения арифметических и логических операций;
- более надежной физической реализацией основных функций, так как они имеют всего два состояния (0 и 1);
- экономичностью аппаратной реализации всех схем ЭВМ.
Восьмеричная и шестнадцатеричная системы счисления являются производными от двоичной, так как и . Они применяются в основном для более компактного изображения двоичной информации, так как запись значения чисел производится существенно меньшим числом знаков
В ЭВМ перевод из одной системы в другую осуществляется автоматически, по специальным программам. Правила перевода целых и дробных чисел отличаются.
БИЛЕТ 7
Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.
1.Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:
2.Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики
3.Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики
4.Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке
5.Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.
6.Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.
7.Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой
8.Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей восьмеричной цифрой
9. Для перевода восьмеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной триадой.
10.Для перевода шестнадцатеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной тетрадой.
11.При переходе из восьмеричной системы счисления в шестнадцатеричную и обратно, необходим промежуточный перевод чисел в двоичную систему.
илет 8
Логика очень древняя наука. Ещё в античные времена была известна формальная логика, позволяющая делать заключения о правильности какого-либо суждения не по его фактическому содержанию, а только по форме его построения. Например, уже в древности был известен закон исключения третьего. Его содержательная трактовка была такова: «Во время своих странствований Платон был в Египте ИЛИ не был Платон в Египте». В такой форме это или любое другое выражение будут правильны (тогда говорили: истинно). Ничего другого быть не может: Платон либо был, либо не был в Египте — третьего не дано.
Другой закон логики — закон непротиворечивости. Если сказать: «Во время своих странствий Платон был в Египте И не был Платон в Египте», то очевидно, любое высказывание, имеющее такую форму, всегда будет ложно. Если из теории следуют два противоречащих друг другу вывода, то такая теория безусловно неправильная (ложная) и должна быть отвергнута.
Ещё один закон, известный в древности — закон отрицания: «Если НЕ верно, что Платон НЕ был в Египте, то значит, Платон был в Египте».
Формальная логика основана на “высказываниях”. “Высказывание” — это основной элемент логики, определяемый как повествовательное предложение, относительно которого можно однозначно сказать, истинное или ложное утверждение оно содержит.
Например: Листва на деревьях опадает осенью. Земля прямоугольная.
Первое высказывание содержит истинную информацию, а второе — ложную. Вопросительное, побудительное и восклицательное предложения не являются высказываниями, так как в них ничего не утверждается и не отрицается.
Пример предложений, не являющихся высказываниями: Не пейте сырую воду! Кто не хочет быть счастливым?
Высказывания могут быть и такими: 21, Н2О+SO3=H2SO4. Здесь используются языки математических символов и химических формул.
Приведённые выше примеры высказываний являются простыми. Но из простых высказываний можно получить сложные, объединив их с помощью логических связок. Логические связки — это слова, которые подразумевают определённые логические связи между высказываниями. Основные логические связки издавна употребляются не только в научном языке, но и в обыденном, — это “и”, “или”, “не”, “если … то”, “либо … либо” и другие известные нам из русского языка связки. В рассмотренных нами трёх законах формальной логики использовались связки “и”, “или”, “не”, “если … то” для связи простых высказываний в сложные.
Высказывания бывают общими, частными и единичными. Общее высказывание начинается со слов: всё, все, всякий, каждый, ни один. Частное высказывание начинается со слов: некоторые, большинство и т.п. Во всех других случаях высказывание является единичным.
Формальная логика была известна в средневековой Европе, она развивалась и обогащалась новыми законами и правилами, но при этом вплоть до 19 века она оставалась обобщением конкретных содержательных данных и её законы сохраняли форму высказываний на разговорном языке.В 1847 году английский математик Джордж Буль, преподаватель провинциального университета в маленьком городке Корке на юге Англии разработал алгебру логики.
Алгебра логики очень проста, так как каждая переменная может принимать только два значения: истинно или ложно. Трудность изучения алгебры логики возникает из-за того, что для обозначения переменных принимают символы 0 и 1, которые по написанию совпадают с обычными арифметическими единицей и нулём. Но совпадение это только внешнее, так как смысл они имеют совсем иной.
Логическая 1 означает, что какое-то событие истинно, в противоположность этому логический 0 означает, что высказывание не соответствует истине, т.е. ложно. Высказывание заменилось на логическое выражение, которое строится из логических переменных (А, В, Х, …) и логических операций (связок).
В алгебре логики знаки операций обозначают лишь три логические связки ИЛИ, И, НЕ.
1.Логическая операция ИЛИ. Логическую функцию принято задавать в виде таблицы. В левой части этой таблицы перечисляются все возможные значения аргументов функции, т.е. входные величины, а в правой указывается соответствующее им значение логической функции. Для элементарных функций получается таблица истинности данной логической операции.Операцию ИЛИ называют также логическим сложением, и потому её можно обозначать знаком «+».
Рассмотрим сложное единичное высказывание: «Летом я поеду в деревню или в туристическую поездку». Обозначим через А простое высказывание «Летом я поеду в деревню», а через В — простое высказывание «Летом я поеду в туристическую поездку». Тогда логическое выражение сложного высказывания имеет вид А+В, и оно будет ложным только, если ни одно из простых высказываний не будет истинным.
2. Логическая операция И
операция И — это логическое умножение, которое ничем не отличается от традиционно известного умножения в обычной алгебре.
В формальной логике операции логического умножения соответствуют связки и, а, но, хотя.
3. Логическая операция НЕ. Эта операция является специфичной для алгебры логики и не имеет аналога в обычной алгебре. Она обозначается чертой над значением переменной, либо знаком приставки перед значением переменной
Читается в обоих случаях одинаково «Не А».
В вычислительной технике операцию НЕ называют отрицанием или инверсией, операцию ИЛИ — дизъюнкцией, операцию И — конъюнкцией. Набор логических функций “И”, “ИЛИ”, “НЕ” является функционально полным набором или базисом алгебры логики. С помощью него можно выразить любые другие логические функции, например операции “строгой дизъюнкции”, “импликации” и “эквивалентности” и др. Рассмотрим некоторые из них.
Логическая операция “строгая дизъюнкция”. Этой логической операции соответствует логическая связка “либо … либо”.
Операция “строгая дизъюнкция” выражается через логические функции “И”, “ИЛИ”, “НЕ”
Логическая операция “импликация”. Выражение, начинающееся со слов если, когда, коль скоро и продолжающееся словами то, тогда, называется условным высказыванием или операцией «импликация».
Эти выражения эквивалентны и читаются одинаково: «Игрек равен импликации от А и В». Операция “импликация” выражается через логические функции “ИЛИ”, “НЕ”
Логическая операция “эквивалентность” (равнозначность). Этой логической операции соответствуют логические связки “если и только если”, «тогда и только тогда, когда».
Операция “эквивалентность” обозначается по-разному.
обозначают одно и тоже, и можно сказать, что А эквивалентна В, если и только если они равнозначны. Логическая операция “эквивалентность” выражается через логические функции “И”, “ИЛИ”, “НЕ”.
С помощью алгебры логики можно очень кратко записать законы формальной логики и дать им математически строгое доказательство.
В алгебре логики, как в элементарной, справедливы переместительный (закон коммутативности), сочетательный (закон ассоциативности) и распределительный (закон дистрибутивности) законы, а также аксиома идемпотентности (отсутствие степеней и коэффициэнтов) и др., в записях которых используются логические переменные, принимающие только два значения — логический ноль и логическая единица. Применение этих законов позволяет производить упрощение логических функций, т.е. находить для них выражения, имеющие наиболее простую форму.
илет 9
Классические принципы построения архитектуры ЭВМ были предложены в 40-х годах ХХ века Дж. фон Нейманом. К этим принципам относятся:
1) использование двоичной системы представления данных;
2) принцип программного управления;
3) принцип однородности памяти;
4) принцип хранимой программы;
5) принцип адресности.
Принцип однородности памяти заключается в том, что программы и данные (числа, тексты) хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в конкретных ячейках памяти – данные для обработки или команды. Над командами можно выполнять такие же действия, как и над данными.
В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.
Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии (рис. 4.1). К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).
Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.
Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.
Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении — от процессора к оперативной памяти и устройствам (однонаправленная шина).
Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:
N = 2I , где I — разрядность шины адреса.
Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 36 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:
N = 236 = 68 719 476 736.
Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и так далее.
илет 10
Архитектура ЭВМ– это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов.
Под архитектурой ЭВМ принято понимать совокупность общих принципов организации аппаратно-программных средств и основных их характеристик, определяющая функциональные возможности ЭВМ при решении соответствующих типов задач. Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно – математическое обеспечение. Структура ЭВМ — совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление. ЭВМ (персональный компьютер (ПК)) – это универсальная вычислительная диалоговая система, реализованная на базе микропроцессорных средств, компактных внешних запоминающих устройств, способная выполнять последовательность операций над информацией определенной программы. В основе функционирования любой ЭВМ лежит архитектура. Архитектура – это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов. В основе архитектуры современных ЭВМ лежат принципы, предложенные американским ученым и теоретиком вычислительной техники Джоном фон Нейманом. ЭВМ состоит из системного блока, к которому подключаются монитор и клавиатура. В системном блоке находятся основные компоненты ЭВМ:
ВЗУ – внешние запоминающие устройства (жесткий диск, приводы CD/DVD/Blu-Ray, флэш-память); некоторые ВЗУ располагаются внутри системного блока и подключаются к контроллерам ВЗУ, а некоторые – снаружи системного блока и подключаются к портам ввода-вывода. Структура ЭВМ
ВК – видеокарта (видеоадаптер, видеоконтроллер) формирует изображение и передает его на монитор; ИП – источник питания обеспечивает питание всех блоков ЭВМ по системной шине;
КВЗУ– контроллеры внешних запоминающих устройств управляют обменом информацией с ВЗУ; КК – контроллер клавиатуры содержит буфер, в который помещаются вводимые символы, и обеспечивает передачу этих символов другим компонентам;
КПВВ – контроллеры портов ввода-вывода управляют обменом информацией с периферийными устройствами;
МП – микропроцессор выполняет команды программы, управляет взаимодействием всех компонент ЭВМ;
ОЗУ – оперативное запоминающее устройство хранит исходные данные и результаты обработки информации во время функционирования ЭВМ;
ПЗУ – постоянное запоминающее устройство хранит программы, выполняемые во время загрузки ЭВМ;
ПУ – периферийные устройства различного назначения: принтеры, сканнеры, манипуляторы «мышь» и др.;
БИЛЕТ 11
Логическая структура микропроцессора, т. е. конфигурация составляющих микропроцессор логических схем и связей между ними, определяется функциональным назначением. Именно структура задает состав логических блоков микропроцессора и то, как эти блоки должны быть связаны между собой, чтобы полностью отвечать архитектурным требованиям. Срабатывание электронных блоков микропроцессора в определенной последовательности приводит к выполнению заданных архитектурой микропроцессора функций, т. е. к реализации вычислительных алгоритмов. Одни и те же функции можно выполнить в микропроцессорах со структурой, отличающейся набором, количеством и порядком срабатывания логических блоков. Различные структуры микропроцессоров, как правило, обеспечивают их различные возможности, в том числе и различную скорость обработки данных. Логические блоки микропроцессора с развитой архитектурой показаны на рис. 2.3.
Рис. 2.3. Общая логическая структура микропроцессора: I — управляющая часть, II — операционная часть; БУПК — блок управления последовательно-стью команд; БУВОп — блок управления выполнением операций; БУФКА — блок управления формированием кодов адресов; БУВП — блок управления виртуальной памятью; БЗП — блок защиты памяти; БУПРПр — блок управления прерыванием работы процессора; БУВВ — блок управления вводом/выводом; РгСОЗУ — регистровое сверхоперативное запоминающее устройство; АЛБ — арифметико-логический блок; БДА — блок дополнительной арифметики; БС — блок синхронизации.
При проектировании логической структуры микропроцессоров необходимо рассмотреть:
1) номенклатуру электронных блоков, необходимую и достаточную для реализации архитектурных требований;
2) способы и средства реализации связей между электронными блоками;
3) методы отбора если не оптимальных, то наиболее рациональных вариантов логических структур из возможного числа структур с отличающимся составом блоков и конфигурацией связей между ними.
При проектировании микропроцессора приводятся в соответствие внутренняя сложность кристалла и количество выводов корпуса. Относительный рост числа элементов по мере развития микроэлектронной технологии во много раз превышает относительное увеличение числа выводов корпуса, поэтому проектирование БИС в виде конечного автомата, а не в виде набора схем, реализующих некоторый набор логических переключательных функций и схем памяти, дает возможность получить функционально законченные блоки и устройства ЭВМ.
Использование микропроцессорных комплектов БИС позволяет создать микроЭВМ для широких областей применения вследствие программной адаптации микропроцессора к конкретной области применения: изменяя программу работы микропроцессора, изменяют функции информационно-управляющей системы. Поэтому за счет составления программы работы микропроцессоров в конкретных условиях работы определенной системы можно получить оптимальные характеристики последней.
Если уровень только программной «настройки» микропроцессоров не позволит получить эффективную систему, доступен следующий уровень проектирования — микропрограммный. За счет изменения содержимого ПЗУ или программируемой логической матрицы (ПЛМ) можно «настроиться» на более специфичные черты системы обработки информации. В этом случае частично за счет изменения микропрограмм затрагивается аппаратный уровень системы. Технико-экономические последствия здесь связаны лишь с ограниченным вмешательством в технологию изготовления управляющих блоков микроЭВМ.
основные функции любого процессора следующие:
1)выборка (чтение) выполняемых команд;
2)ввод (чтение) данных из памяти или УВВ;
3)вывод (запись) данных в память или УВВ;
4)обработка данных (операндов), в том числе арифметические операции над ними;
5)адресация памяти, т. е. задание адреса памяти, с которым будет производиться обмен;
6)обработка прерываний и режима прямого доступа к памяти (ПДП).
13.Персональные компьютеры выпускаются в следующих конструктивных исполнениях: стационарные (настольные) и переносные. Наиболее распространенными являются настольные ПК, которые позволяют легко изменять конфигурацию.
К базовой конфигурации относятся устройства, без которых не может работать современный ПК:
системный блок;
клавиатура, которая обеспечивает ввод информации в компьютер;
манипулятор мышь, облегчающий ввод информации в компьютер;
монитор, предназначенный для изображения текстовой и графической информации.
Системный блок представляет собой металлическую коробку со съемной крышкой, в которой размещены различные устройства компьютера.
По форме корпуса бывают:
Desktop – плоские корпуса (горизонтальное расположение), их обычно располагают на столе и используют в качестве подставки для монитора
Tower — вытянутые в виде башен (вертикальное расположение), обычно располагаются на полу.
Корпуса различаются по размерам, указанные приставки Super, Big, Midi, Micro, Tiny, Flex, Mini, Slim обозначают размеры корпусов. На передней стенке корпуса размещены кнопки “Power” — Пуск, “Reset” — Перезапуск, индикаторы питания и хода работы ПК.
Клавиатура- устройство, предназначенное для ввода пользователем информации в компьютер. Стандартная клавиатура имеет более 100 клавиш.
1. Клавиши пишущей машинки.
2. Цифровые клавиши (переключение режима работы осуществляется клавишей NumLock).
3. Клавиши редактирования (Insert, Delete, Back Space).
4. Клавиши управления курсором (две группы клавиш: четыре клавиши со стрелками и четыре клавиши: Home, End, Page Up, Page Down).
5. Специальные клавиши (Ctrl, Alt, Esc, Num Lock, Scroll Lock, Print Screen, Pause).
6. Функциональные клавиши F1 – F12 (расположены в верхней части клавиатуры и предназначены для вызова наиболее часто использующихся команд
Манипулятор мышь – устройство управления манипуляторного типа. Небольшая коробочка с клавишами (1, 2 или 3 клавиши). Перемещение мыши по плоской поверхности (например, коврика) синхронизировано с перемещением указателя мыши на экране монитора.
Ввод информации осуществляется перемещением курсора в определенную область экрана и кратковременным нажатием кнопок манипулятора или щелчками (одинарными или двойными). По принципу работы манипуляторы делятся на механические, оптомеханические и оптические.
Мониторы – устройства, которые служат для обеспечения диалогового режима работы пользователя с компьютером путем вывода на экран графической и символьной информации. В графическом режиме экран состоит из точек (пикселей от англ. pixel — picture element, элемент картинки), полученных разбиением экрана на столбцы и строки.
Количество пикселей на экране называется разрешающей способностью монитора в данном режиме. В настоящее время мониторы ПК могут работать в следующих режимах: 480х640, 600х800, 768х1024, 864х1152, 1024х1280 (количество пикселей по вертикали и горизонтали).
Разрешающая способность зависит от типа монитора и видеоадаптера. Каждый пиксел может быть окрашен в один из возможных цветов. Стандарты отображения цвета: 16, 256, 64К, 16М цветовых оттенков каждого пиксела.
По принципу действия все современные мониторы разделяются на:
1. Мониторы на базе электронно-лучевой трубки (CRT).
2. Жидкокристаллические дисплеи (LCD).
3. Плазменные мониторы.
Стандартные мониторы имеют длину диагонали 14, 15, 17, 19, 20, 21 и 22 дюйма. В мониторах CRT изображение формируется электронно-лучевой трубкой. При настройке монитора необходимо устанавливать такие параметры разрешающей способности и режима отображения цвета, чтобы частота обновления кадров не превышала 85 Гц.
илет 12
12.Виды памяти. Основная характеристика памяти. Свойства памяти.
Внутренняя память — это память, к которой процессор может обратиться непосредственно в процессе работы и немедленно использовать ее.
Внутренняя память ПК обладает двумя основными свойствами: дискретностью и адресуемостью.
Дискретность – память состоит из битов (бит — элемент памяти, частица информации, хранит двоичный код 0 или 1. Слово бит произошло от англ. «binary digit» — двоичная цифра).
Принцип адресуемости памяти заключается в том, что любая информация заносится в память и извлекается из нее по адресам.
К внутpенней памяти относятся:
1.Оперативная память
2.Кэш память
3.Специальная память
4.Постоянная память
5. Перепрограммируемая постоянная память
6. CMOS RAM
7.Видеопамять
Внешняя (долговременная) память — это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные).
Дисковод (накопитель) — устройство записи/считывания информации. Накопители имеют собственное имя – буква латинского алфавита, за которой следует двоеточие. Для подключения к компьютеру одного или несколько дисководов и управления их работой нужен Дисковый контроллер
Носитель информации (носитель записи) – материальный объект, способный хранить информацию. Информация записывается на носитель посредством изменения физических, химических и механических свойств запоминающей среды
По типу доступа к информации внешнюю память делят на два класса:
Устройства прямого (произвольного) доступа – время обращения к информации не зависит от места её расположения на носителе;
Устройство последовательного доступа – такая зависимость существует
В состав внешней памяти входят: 1) накопители на жестких магнитных дисках (НЖМД); 2) накопители на гибких магнитных дисках (НГМД); 3) накопители на магнитооптических компакт дисках; 4) накопители на оптических дисках (CD-ROM); 5) накопители на магнитной ленте и др.
БИЛЕТ 13
.Персональные компьютеры выпускаются в следующих конструктивных исполнениях: стационарные (настольные) и переносные. Наиболее распространенными являются настольные ПК, которые позволяют легко изменять конфигурацию.
К базовой конфигурации относятся устройства, без которых не может работать современный ПК:
системный блок;
клавиатура, которая обеспечивает ввод информации в компьютер;
манипулятор мышь, облегчающий ввод информации в компьютер;
монитор, предназначенный для изображения текстовой и графической информации.
Системный блок представляет собой металлическую коробку со съемной крышкой, в которой размещены различные устройства компьютера.
По форме корпуса бывают:
Desktop – плоские корпуса (горизонтальное расположение), их обычно располагают на столе и используют в качестве подставки для монитора
Tower — вытянутые в виде башен (вертикальное расположение), обычно располагаются на полу.
Корпуса различаются по размерам, указанные приставки Super, Big, Midi, Micro, Tiny, Flex, Mini, Slim обозначают размеры корпусов. На передней стенке корпуса размещены кнопки “Power” — Пуск, “Reset” — Перезапуск, индикаторы питания и хода работы ПК.
Клавиатура- устройство, предназначенное для ввода пользователем информации в компьютер. Стандартная клавиатура имеет более 100 клавиш.
1. Клавиши пишущей машинки.
2. Цифровые клавиши (переключение режима работы осуществляется клавишей NumLock).
3. Клавиши редактирования (Insert, Delete, Back Space).
4. Клавиши управления курсором (две группы клавиш: четыре клавиши со стрелками и четыре клавиши: Home, End, Page Up, Page Down).
5. Специальные клавиши (Ctrl, Alt, Esc, Num Lock, Scroll Lock, Print Screen, Pause).
6. Функциональные клавиши F1 – F12 (расположены в верхней части клавиатуры и предназначены для вызова наиболее часто использующихся команд
Манипулятор мышь – устройство управления манипуляторного типа. Небольшая коробочка с клавишами (1, 2 или 3 клавиши). Перемещение мыши по плоской поверхности (например, коврика) синхронизировано с перемещением указателя мыши на экране монитора.
Ввод информации осуществляется перемещением курсора в определенную область экрана и кратковременным нажатием кнопок манипулятора или щелчками (одинарными или двойными). По принципу работы манипуляторы делятся на механические, оптомеханические и оптические.
Мониторы – устройства, которые служат для обеспечения диалогового режима работы пользователя с компьютером путем вывода на экран графической и символьной информации. В графическом режиме экран состоит из точек (пикселей от англ. pixel — picture element, элемент картинки), полученных разбиением экрана на столбцы и строки.
Количество пикселей на экране называется разрешающей способностью монитора в данном режиме. В настоящее время мониторы ПК могут работать в следующих режимах: 480х640, 600х800, 768х1024, 864х1152, 1024х1280 (количество пикселей по вертикали и горизонтали).
Разрешающая способность зависит от типа монитора и видеоадаптера. Каждый пиксел может быть окрашен в один из возможных цветов. Стандарты отображения цвета: 16, 256, 64К, 16М цветовых оттенков каждого пиксела.
По принципу действия все современные мониторы разделяются на:
1. Мониторы на базе электронно-лучевой трубки (CRT).
2. Жидкокристаллические дисплеи (LCD).
3. Плазменные мониторы.
Стандартные мониторы имеют длину диагонали 14, 15, 17, 19, 20, 21 и 22 дюйма. В мониторах CRT изображение формируется электронно-лучевой трубкой. При настройке монитора необходимо устанавливать такие параметры разрешающей способности и режима отображения цвета, чтобы частота обновления кадров не превышала 85 Гц.
БИЛЕТ 14
14.Состав системного блока. Назначения каждого устройства, характеристики
Итак, из чего же состоит наш обычный персональный компьютер (ПК), который мы используем дома или на работе.
Рассмотрим его аппаратную часть («железо»):
системный блок (та большая коробка, которая стоит у вас на столе или под столом, сбоку от него и т.д.). В нем располагаются все основные узлы компьютера.
периферийные устройства (такие как монитор, клавиатура, мышь, модем, сканер и пр.).
Системный блок
Системный блок в компьютере является «главным». Если аккуратно открутить шурупы с его задней стенки, снять боковую панель и заглянуть внутрь, то лишь с виду его устройство покажется сложным. Сейчас я коротко опишу его устройство, а потом охарактеризую главные элементы максимально понятным языком.
Системный блок
В системном блоке размещаются следующие элементы (не обязательно все сразу):
1. Блок питания
2. Накопитель на жестком магнитном диске (HDD)
3. Накопитель на гибком магнитном диске (FDD)
4. Накопитель на компакт-диске (CD ROM)
5. Накопитель на dvd-диске (DVD ROM)
6. Разъемы для дополнительных устройств (порты) на задней (иногда и на передней) панели, и др.
7. Системная плата (ее чаще называют материнской), которая, в свою очередь, содержит:
— микропроцессор;
— математический сопроцессор;
— генератор тактовых импульсов;
— микросхемы памяти (ОЗУ, ПЗУ, кэш-память, CMOS-память)
— контроллеры (адаптеры) устройств: клавиатуры, дисков и др.
— звуковая, видео- и сетевая карты
— таймер и др.
Все они подсоединяются к материнской плате с помощью разъемов (слотов). Ее элементы мы рассмотрим ниже.
Ну, а пока по порядку о системном блоке:
1. С блоком питания все понятно: он преобразует электропитание сети(переменный ток) в постоянный ток низкого напряжения, для электронных схем компьютера.
2. Накопитель на жестком магнитном диске (HDD — hard disk drive) в простонародье называют винчестером.
HDD
Это прозвище возникло из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973 год), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром «30/30» известного охотничьего ружья «Винчестер». Емкость этого накопителя измеряется обычно в гигабайтах: от 20 Гб (на старых компьютерах) до нескольких Террабайт (1Тб = 1024 Гб). Самая распространенная емкость винчестера — 250-500 Гб. Скорость операций зависит от частоты вращения (5400-10000 об/мин). В зависимости от типа соединения винчестера с материнской платой различают ATA и IDE.
3. Накопитель на гибком магнитном диске (FDD — floppy disk drive) — не что иное, как флоппи-дисковод для дискет. Их стандартная емкость – 1,44 Мб при диаметре 3,5 (89 мм). В качестве запоминающей среды у магнитных дисков используются магнитные материалы со специальными свойствами, позволяющими фиксировать два магнитных состояния, каждому из которых ставятся в соответствие двоичные цифры: 0 и 1.
4. Накопители на оптических дисках (CD-ROM) бывают разных диаметров (3,5 и 5,25) и емкостей. Самые распространенные из них – емкостью 700 Мб. Бывает, что CD диски можно использовать для записи только 1 раз (тогда их называют R), а выгоднее использовать многократно перезаписываемые диски RW.
CD/DVD-ROM
5. DVD первоначально расшифровывалось как Digital Video Disk. Несмотря на название, на DVD-диски можно записывать всё, что угодно, — от музыки до данных. Поэтому в последнее время всё чаще встречается и другая расшифровка этого названия — Digital Versatile Disk, в вольном переводе означающая «цифровой универсальный диск». Главное отличие DVD-дисков от CD-дисков – это объём информации, который может быть записан на таком носителе. На DVD-диск может быть записано от 4.7 до 13, и даже до 17 Gb. Достигается это несколькими способами. Во-первых, для чтения DVD-дисков используется лазер с меньшей длиной волны, чем для чтения CD-дисков, что позволило существенно увеличить плотность записи. Во-вторых, стандартом предусмотрены так называемые двухслойные диски, у которых на одной стороне данные записаны в два слоя, при этом один слой полупрозрачный, и второй слой читается «сквозь» первый. Это позволило записывать данные на обе стороны DVD-дисков, и таким образом удваивать их ёмкость, что иногда и делается.
6. К персональному компьютеру могут подключаться и другие дополнительные устройства (мышь, принтер, сканер и прочее). Подключение производится через порты — специальные разъемы на задней панели.
разъемы на задней панели
Порты бывают параллельные (LPT), последовательные (COM) и универсальные последовательные (USB). По последовательному порту информация передается поразрядно (более медленно) по малому числу проводов. К последовательному порту подключаются мышь и модем. По параллельному порту информация передается одновременно по большому числу проводов, соответствующему числу разрядов. К параллельному порту подключается принтер и выносной винчестер. USB-порт используется для подключения широкого спектра периферийных устройств – от мыши до принтера. Также возможен обмен данными между компьютерами.
7. Основные устройства компьютера (процессор, ОЗУ и др.) размещены на материнской плате.
Микропроцессор (проще — процессор) — центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.
Процессор
Его главные характеристики — это разрядность (чем она выше, тем выше производительность компьютера) и тактовая частота (во многом определяет скорость работы компьютера). Тактовая частота указывает, сколько элементарных операций (тактов) процессор выполняет за одну секунду.
Уважают на рынке процессоры Intel Pentium и его эконом-версию Celeron, а также ценят их конкурентов – AMD Athlon с эконом-вариантом Duron. Процессоры Intel характеризуются высокой надежностью в работе, низким тепловыделением и совместимостью со всем программным и аппаратным обеспечением. А AMD показывают большую скорость работы с графикой и играми, но менее надежны.
Память компьютера бывает внутренней и внешней. К устройствам внешней памяти относятся уже рассмотренные HDD, FDD, CD-ROM, DVD-ROM. К внутренней памяти относится постоянное ЗУ (ПЗУ, ROM англ.), оперативное ЗУ (ОЗУ, RAM англ.), КЭШ.
ПЗУ предназначено для хранения постоянной программной и справочной информации (BIOS — Basic Input-Output System — базовая система ввода-вывода).
ОЗУ обладает высоким быстродействием и используется процессором для кратковременного хранения информации во время работы компьютера.
Оперативная память
При выключении источника питания информация в ОЗУ не сохраняется. Для нормального функционирования компьютера в наши дни желательно иметь от 1 Гб до 3 Гб оперативки.
КЭШ-память — это оперативная сверхскоростная промежуточная память.
CMOS-память — CMOS RAM (Complementary Metall-Oxide Semiconductor RAM). В ней хранятся параметры конфигурации компьютера, которые проверяются при каждом включении системы. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера — SETUP.
Звуковая, видео и сетевая карты могут быть как встроенными в материнскую плату, так и внешними. Внешние платы всегда можно заменить, тогда как, если из строя выйдет встроенная видеокарта, придется менять всю материнскую плату. Из видеокарт я доверяю ATI Radeon и Nvidia. Чем выше объем памяти видеокарты, тем лучше.
БИЛЕТ 15
Устро?йства вво?да — периферийное оборудование, предназначенное для ввода (занесения) данных или сигналов в компьютер или в другое электронное устройство во время его работы.
Устройства ввода подразделяются на следующие категории:
Внешние устройства подключаются к компьютеру через специальные разъемы-порты ввода-вывода. Порты ввода-вывода бывают следующих типов:
- параллельные (обозначаемые LPT1 — LPT4) — обычно используются для подключения принтеров;
- последовательные (обозначаемые СОМ1 — COM4) — обычно к ним подключаются мышь, модем и другие устройства.
К внешним устройствам относятся:
- устройства ввода информации;
- устройства вывода информации;
- диалоговые средства пользователя;
- средства связи и телекоммуникации.
К устройствам ввода информации относятся:
- устройства ввода графической, звуковой и видео информации;
- механические устройства ввода;
- непрерывные устройства ввода (устройства, предоставляющие входные данные непрерывно, например, мышь, радиоприёмник, ТВ-тюнер);
- устройства ввода для пространственного использования (например, двухмерная мышь, трёхмерный навигатор).
Компьютерные указывающие устройства ввода по способу управления курсором делят на следующие категории:
- указывающие устройства прямого ввода (управление осуществляется непосредственно в месте видимости курсора (например, сенсорные панели и экраны));
- непрямые указывающие устройства (например, трекбол, компьютерная мышь).
сновным и, обычно, необходимым устройством ввода текстовых символов и последовательностей команд в компьютер остаётся клавиатура.
Устройства ввода графической информации:
- сканер;
- видео- и веб-камера;
- цифровой фотоаппарат;
- плата видеозахвата.
Устройства ввода звуковой информации:
- микрофон;
- цифровой диктофон.
Указательные (координатные) устройства:
- компьютерная мышь;
- трекбол;
- тачпад;
- световое перо;
- графический планшет;
- сенсорный экран или тачскрин;
- джойстик;
- устройства, основанные на компьютерном зрении, типа Kinect.
Игровые устройства ввода:
- джойстик;
- геймпад;
- компьютерный руль;
- танцевальная платформа;
- педали;
- световой пистолет.
илет 16
Внешние (периферийные) устройства персонального компьютера составляют важнейшую часть любого вычислительного комплекса. Стоимость внешних устройств в среднем составляет около 80-85% стоимости нашего комплекса. Внешние устройства обеспечивают взаимодействие компьютера с окружающей средой — пользователями, объектами управления и другими компьютерами.
К базовой конфигурации относятся устройства, без которых не может работать современный ПК:
§ системный блок;
§ клавиатура, которая обеспечивает ввод информации в компьютер;
§ манипулятор мышь, облегчающий ввод информации в компьютер;
§ монитор, предназначенный для изображения текстовой и графической информации.
Внешние устройства подключаются к компьютеру через специальные разъемы-порты ввода-вывода. Порты ввода-вывода бывают следующих типов:
- параллельные (обозначаемые LPT1 — LPT4) — обычно используются для подключения принтеров;
- последовательные (обозначаемые СОМ1 — COM4) — обычно к ним подключаются мышь, модем и другие устройства.
К внешним устройствам относятся:
- устройства ввода информации;
- устройства вывода информации;
- диалоговые средства пользователя;
- средства связи и телекоммуникации.
К устройствам вывода информации относятся:
Устройства вывода — это преобразователи электрической цифровой информации в вид необходимый для получения требуемого результата, могущего быть как неэлектрической природы (механические, тепловые, оптические, звуковые), так и электрической природы (трансформаторы, нагреватели, электродвигатели,реле).
онитор
Монито#7
Статьи к прочтению:
3 лучших театра войны для новой Call of Duty про Вторую Мировую
Похожие статьи:
-
Распределение оценивания результатов обучения по видам контроля
Наименование элемента умений или знаний Виды аттестации Текущий контроль Промежуточная аттестация у1 получать информацию о параметрах компьютерной…
-
Технология решения задач на компьютере.
Предмет информатики. Информатика: определение, история, составные части, сферы применения, информационное общество. Информация: определение,…