Файл (англ. file) — блок информации на внешнем запоминающем устройстве компьютера, имеющий определённое логическое представление (начиная от простой последовательности битов или байтов и заканчивая объектом сложной СУБД), соответствующие ему операции чтения-записи (см. ниже) и, как правило, фиксированное имя (символьное или числовое), позволяющее получить доступ к этому файлу и отличить его от других файлов. Операции с файлом
Условно можно выделить два типа операций с файлом — связанные с его открытием, и выполняющиеся без его открытия. Операции первого типа обычно служат для чтения/записи информации или подготовки к записи/чтению. Операции второго типа выполняются с файлом как с «объектом» файловой системы, в котором файл является мельчайшей единицей структурирования.
[править]Операции, связанные с открытием файла
В зависимости от операционной системы те или иные операции могут отсутствовать.
Обычно выделяют дополнительные сущности, связанные с работой с файлом:
хэндлер файла, или дескриптор (описатель). При открытии файла (в случае, если это возможно), операционная система возвращает число (или указатель на структуру), с помощью которого выполняются все остальные файловые операции. По их завершению файл закрывается, а хэндлер теряет смысл.
файловый указатель. Число, являющееся смещением относительно нулевого байта в файле. Обычно по этому адресу осуществляется чтение/запись, в случае, если вызов операции чтения/записи не предусматривает указание адреса. При выполнении операций чтения/записи файловый указатель смещается на число прочитанных (записанных) байт. Последовательный вызов операций чтения таким образом позволяет прочитать весь файл не заботясь о его размере.
файловый буфер. Операционная система (и/или библиотека языка программирования) осуществляет кэширование файловых операций в специальном буфере (участке памяти). При закрытии файла буфер сбрасывается.
режим доступа. В зависимости от потребностей программы, файл может быть открыт на чтение и/или запись. Кроме того, некоторые операционные системы (и/или библиотеки) предусматривают режим работы с текстовыми файлами. Режим обычно указывается при открытии файла.
режим общего доступа. В случае многозадачной операционной системы возможна ситуация, когда несколько программ одновременно хотят открыть файл на запись и/или чтение. Для регуляции этого существуют режимы общего доступа, указывающие на возможность осуществления совместного доступа к файлу (например, файл в который производится запись может быть открыт для чтения другими программами — это стандартный режим работы log-файлов).
Операции
Открытие файла (обычно в качестве параметров передается имя файла, режим доступа и режим совместного доступа, а в качестве значения выступает файловый хэндлер или дескриптор), кроме того обычно имеется возможность в случае открытия на запись указать на то, должен ли размер файла изменяться на нулевой.
Закрытие файла. В качестве аргумента выступает значение, полученное при открытии файла. При закрытии все файловые буферы сбрасываются.
Запись — в файл помещаются данные.
Чтение — данные из файла помещаются в область памяти.
Перемещение указателя — указатель перемещается на указанное число байт вперёд/назад или перемещается по указанному смещению относительно начала/конца. Не все файлы позволяют выполнение этой операции (например, файл на ленточном накопителе может не «уметь» перематываться назад).
Сброс буферов — содержимое файловых буферов с незаписанной в файл информацией записывается. Используется обычно для указания на завершение записи логического блока (для сохранения данных в файле на случай сбоя).
Получение текущего значения файлового указателя.
[править]Операции, не связанные с открытием файла
Операции, не требующие открытия файла, оперируют с его «внешними» признаками — размером, именем, положением в дереве каталогов. При таких операциях невозможно получить доступ к содержимому файла, файл является минимальной единицей деления информации.
В зависимости от файловой системы, носителя информации, операционной системой часть операций может быть недоступна.
Возможные операции с файлами: открытие для изменения, удаление, переименование, копирование, перенос на другую файловую систему/носитель информации, создание симлинка или хардлинка, получение или изменение атрибутов.
[править]Типы файлов
В различных операционных и/или файловых системах могут быть реализованы различные типы файлов; кроме того, реализация различных типов может различаться.
«Обыкновенный файл» — файл, позволяющий операции чтения, записи, перемещения внутри файла
Каталог (англ. directory — алфавитный справочник) или директория — файл, содержащий записи о входящих в него файлах. Каталоги могут содержать записи о других каталогах, образуя древовидную структуру.
Жёсткая ссылка (англ. hardlink, часто используется калька «хардлинк») — в общем случае, одна и та же область информации может иметь несколько имён. Такие имена называют жёсткими ссылками (хардлинками). После создания хардлинка сказать где «настоящий» файл, а где хардлинк невозможно, так как имена равноправны. Сама область данных существует до тех пор, пока существует хотя бы одно из имён. Хардлинки возможны только на одном физическом носителе.
Символьная ссылка (симлинк, софтлинк) — файл, содержащий в себе ссылку на другой файл или директорию. Может ссылаться на любой элемент файловой системы, в том числе, и расположенный на другом физическом носителе. Файловый принцип организации данных
Файловая система — основная компонента операционной системы. Она организует работу внешних устройств хранения информации. Внешняя память расположена на различных физических носителях (жесткий и гибкий диски, магнитная лента).
ФС создает для пользователя виртуальное представление о внешних запоминающих устройствах, позволяет работать с внешними устройствами памяти на высоком уровне наборов и структур данных в виде файла, скрывая реальное расположение информации и аппаратные особенности внешней памяти.
Разнообразие устройств внешней памяти делает актуальной функцию ОС по созданию логического интерфейса между приложениями и устройствами внешней памяти. Все современные ОС основывают такой интерфейс на файловой модели внешнего устройства. Любое устройство выглядит для прикладного программиста в виде последовательного набора байт, с которым можно работать с помощью системных вызовов (например, write и read), задавая имя файла-устройства и смещение от начала последовательности байт.
Модель файловой системы
Общая модель файловой системы
Функционирование любой файловой системы можно представить многоуровневой моделью (рисунок 2.36), в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в свою очередь, для выполнения своей работы использует интерфейс (обращается с набором запросов) нижележащего уровня.
Рис. 2.36. Общая модель файловой системы
Задачей символьного уровня является определение по символьному имени файла его уникального имени. В файловых системах, в которых каждый файл может иметь только одно символьное имя (например, MS-DOS), этот уровень отсутствует, так как символьное имя, присвоенное файлу пользователем, является одновременно уникальным и может быть использовано операционной системой. В других файловых системах, в которых один и тот же файл может иметь несколько символьных имен, на данном уровне просматривается цепочка каталогов для определения уникального имени файла. В файловой системе UNIX, например, уникальным именем является номер индексного дескриптора файла (i-node).
На следующем, базовом уровне по уникальному имени файла определяются его характеристики: права доступа, адрес, размер и другие. Как уже было сказано, характеристики файла могут входить в состав каталога или храниться в отдельных таблицах. При открытии файла его характеристики перемещаются с диска в оперативную память, чтобы уменьшить среднее время доступа к файлу. В некоторых файловых системах (например, HPFS) при открытии файла вместе с его характеристиками в оперативную память перемещаются несколько первых блоков файла, содержащих данные.
Следующим этапом реализации запроса к файлу является проверка прав доступа к нему. Для этого сравниваются полномочия пользователя или процесса, выдавших запрос, со списком разрешенных видов доступа к данному файлу. Если запрашиваемый вид доступа разрешен, то выполнение запроса продолжается, если нет, то выдается сообщение о нарушении прав доступа.
На логическом уровне определяются координаты запрашиваемой логической записи в файле, то есть требуется определить, на каком расстоянии (в байтах) от начала файла находится требуемая логическая запись. При этом абстрагируются от физического расположения файла, он представляется в виде непрерывной последовательности байт. Алгоритм работы данного уровня зависит от логической организации файла. Например, если файл организован как последовательность логических записей фиксированной длины l, то n-ая логическая запись имеет смещение l((n-1) байт. Для определения координат логической записи в файле с индексно-последовательной организацией выполняется чтение таблицы индексов (ключей), в которой непосредственно указывается адрес логической записи.
Рис. 2.37. Функции физического уровня файловой системы
Исходные данные:
V — размер блока
N — номер первого блока файла
S — смещение логической записи в файле
Требуется определить на физическом уровне:
n — номер блока, содержащего требуемую логическую запись
s — смещение логической записи в пределах блока
n = N + [S/V], где [S/V] — целая часть числа S/V
s = R [S/V] — дробная часть числа S/V
На физическом уровне файловая система определяет номер физического блока, который содержит требуемую логическую запись, и смещение логической записи в физическом блоке. Для решения этой задачи используются результаты работы логического уровня — смещение логической записи в файле, адрес файла на внешнем устройстве, а также сведения о физической организации файла, включая размер блока. Рисунок 2.37 иллюстрирует работу физического уровня для простейшей физической организации файла в виде непрерывной последовательности блоков. Подчеркнем, что задача физического уровня решается независимо от того, как был логически организован файл.
После определения номера физического блока, файловая система обращается к системе ввода-вывода для выполнения операции обмена с внешним устройством. В ответ на этот запрос в буфер файловой системы будет передан нужный блок, в котором на основании полученного при работе физического уровня смещения выбирается требуемая логическая запись.
22. Файловая система: структура, физическая организация -?
Фа?йловая систе?ма (англ. file system) — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имени файла (папки), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.
Файловая система связывает носитель информации с одной стороны и API для доступа к файлам — с другой. Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жёстком диске, магнитной ленте, блоке флеш-памяти или другом) он записан. Всё, что знает программа — это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).
12.2 Общая структура файловой системы
Система хранения данных на дисках может быть структурирована следующим образом (см. рис. 12.1).
Нижний уровень — оборудование. Это в первую очередь, магнитные диски с подвижными головками — основные устройства внешней памяти, представляющие собой пакеты магнитных пластин (поверхностей), между которыми на одном рычаге двигается пакет магнитных головок. Шаг движения пакета головок является дискретным и каждому положению пакета головок логически соответствует цилиндр магнитного диска. Цилиндры делятся на дорожки (треки), а каждая дорожка размечается на одно и то же количество блоков (секторов), таким образом, что в каждый блок можно записать по максимуму одно и то же число байтов. Следовательно, для произведения обмена с магнитным диском на уровне аппаратуры нужно указать номер цилиндра, номер поверхности, номер блока на соответствующей дорожке и число байтов, которое нужно записать или прочитать от начала этого блока. Таким образом, диски могут быть разбиты на блоки фиксированного размера, и можно непосредственно получить доступ к любому блоку (организовать прямой доступ к файлам).
Непосредственно с устройствами (дисками) взаимодействует часть ОС, называемая система ввода-вывода (см. соответствующую главу). Система ввода-вывода (она состоит из драйверов устройств и обработчиков прерываний для передачи информации между памятью и дисковой системой) предоставляет в распоряжение более высокоуровневого компонента ОС — файловой системы используемое дисковое пространство в виде непрерывной последовательности блоков фиксированного размера. Система ввода-вывода имеет дело с физическими блоками диска, которые характеризуются адресом, например, диск 2, цилиндр 75, сектор 11. Файловая система имеет дело с логическими блоками, каждый из которых имеет номер (от 0 или 1 до N). Размер этих логических блоков файла совпадает или кратен размеру физического блока диска и может быть задан равным размеру страницы виртуальной памяти, поддерживаемой аппаратурой компьютера совместно с операционной системой.
В структуре системы управления файлами можно выделить базисную подсистему, которая отвечает за выделение дискового пространства конкретным файлам, и более высокоуровневую логическую подсистему, которая использует структуру дерева директорий для предоставления модулю базисной подсистемы необходимой ей информации исходя из символического имени файла. Она также ответственна за авторизацию доступа к файлам (см. главу Безопасность ОС).
Рис. 12.1 Блок схема файловой системы
В современных ОС далее принято разбивать диски на логические диски (это также низкоуровневая операция), иногда называемые разделами (partitions). Бывает, что наоборот объединяют несколько физических дисков в один логический диск (например, как это можно сделать в ОС Windows NT). На каждом разделе можно иметь свою независимую файловую систему. Поэтому в дальнейшем изложении мы будем игнорировать проблему физического выделения пространства для файлов и считать, что каждый раздел представляет собой отдельный (виртуальный) диск. Собственно диск содержит иерархическую древовидную структуру, состоящую из набора файлов, каждый из которых является хранилищем данных пользователя, и каталогов или директорий (то есть файлов, которые содержат перечень других файлов, входящих в состав каталога), которые необходимы для хранения информации о файлах системы.
Стандартный запрос на открытие (open) или создание (creat) файла поступает от прикладной программы к логической подсистеме. Логическая подсистема, используя структуру директорий, проверяет права доступа и вызывает базовую подсистему для получения доступа к блокам файла. После этого файл считается открытым, содержится в таблице открытых файлов, прикладная программа получает в свое распоряжение дескриптор (или handle в системах Microsoft) этого файла. Дескриптор файла является ссылкой на файл в таблице открытых файлов и используется в запросах прикладной программы на чтение-запись из этого файла. Запись в таблице открытых файлов указывает через систему аллокации блоков диска на блоки данного файла. Если к моменту открытия файл уже используется другим процессом, то есть содержится в таблице открытых файлов, то, после проверки прав доступа к файлу может быть организован совместный доступ. При этом новому процессу также возвращается дескриптор — ссылка на файл в таблице открытых файлов. ФИЗИЧЕСКАЯ ОРГАНИЗАЦИЯ ФАЙЛОВОЙ СИСТЕМЫ
Представление пользователя о файловой системе как об иерархически организованном множестве информационных объектов имеет мало общего с порядком хранения файлов на диске. Файл, имеющий образ цельного, непрерывающегося набора байт, на самом деле очень часто разбросан «кусочками» по всему диску, причем это разбиение никак не связано с логической структурой файла, например, его отдельная логическая запись может быть расположена в несмежных секторах диска. Логически объединенные файлы из одного каталога совсем не обязаны соседствовать на диске. Принципы размещения файлов, каталогов и системной информации на реальном устройстве описываются физической организацией файловой системы. Очевидно, что разные файловые системы имеют разную физическую организацию.
23. Файловая система: структура, логическая организация
Фа?йловая систе?ма (англ. file system) — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и способ физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имени файла (папки), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.
Файловая система связывает носитель информации с одной стороны и API для доступа к файлам — с другой. Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жёстком диске, магнитной ленте, блоке флеш-памяти или другом) он записан. Всё, что знает программа — это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).
12.2 Общая структура файловой системы
Система хранения данных на дисках может быть структурирована следующим образом (см. рис. 12.1).
Нижний уровень — оборудование. Это в первую очередь, магнитные диски с подвижными головками — основные устройства внешней памяти, представляющие собой пакеты магнитных пластин (поверхностей), между которыми на одном рычаге двигается пакет магнитных головок. Шаг движения пакета головок является дискретным и каждому положению пакета головок логически соответствует цилиндр магнитного диска. Цилиндры делятся на дорожки (треки), а каждая дорожка размечается на одно и то же количество блоков (секторов), таким образом, что в каждый блок можно записать по максимуму одно и то же число байтов. Следовательно, для произведения обмена с магнитным диском на уровне аппаратуры нужно указать номер цилиндра, номер поверхности, номер блока на соответствующей дорожке и число байтов, которое нужно записать или прочитать от начала этого блока. Таким образом, диски могут быть разбиты на блоки фиксированного размера, и можно непосредственно получить доступ к любому блоку (организовать прямой доступ к файлам).
Непосредственно с устройствами (дисками) взаимодействует часть ОС, называемая система ввода-вывода (см. соответствующую главу). Система ввода-вывода (она состоит из драйверов устройств и обработчиков прерываний для передачи информации между памятью и дисковой системой) предоставляет в распоряжение более высокоуровневого компонента ОС — файловой системы используемое дисковое пространство в виде непрерывной последовательности блоков фиксированного размера. Система ввода-вывода имеет дело с физическими блоками диска, которые характеризуются адресом, например, диск 2, цилиндр 75, сектор 11. Файловая система имеет дело с логическими блоками, каждый из которых имеет номер (от 0 или 1 до N). Размер этих логических блоков файла совпадает или кратен размеру физического блока диска и может быть задан равным размеру страницы виртуальной памяти, поддерживаемой аппаратурой компьютера совместно с операционной системой.
В структуре системы управления файлами можно выделить базисную подсистему, которая отвечает за выделение дискового пространства конкретным файлам, и более высокоуровневую логическую подсистему, которая использует структуру дерева директорий для предоставления модулю базисной подсистемы необходимой ей информации исходя из символического имени файла. Она также ответственна за авторизацию доступа к файлам (см. главу Безопасность ОС).
Рис. 12.1 Блок схема файловой системы
В современных ОС далее принято разбивать диски на логические диски (это также низкоуровневая операция), иногда называемые разделами (partitions). Бывает, что наоборот объединяют несколько физических дисков в один логический диск (например, как это можно сделать в ОС Windows NT). На каждом разделе можно иметь свою независимую файловую систему. Поэтому в дальнейшем изложении мы будем игнорировать проблему физического выделения пространства для файлов и считать, что каждый раздел представляет собой отдельный (виртуальный) диск. Собственно диск содержит иерархическую древовидную структуру, состоящую из набора файлов, каждый из которых является хранилищем данных пользователя, и каталогов или директорий (то есть файлов, которые содержат перечень других файлов, входящих в состав каталога), которые необходимы для хранения информации о файлах системы.
Стандартный запрос на открытие (open) или создание (creat) файла поступает от прикладной программы к логической подсистеме. Логическая подсистема, используя структуру директорий, проверяет права доступа и вызывает базовую подсистему для получения доступа к блокам файла. После этого файл считается открытым, содержится в таблице открытых файлов, прикладная программа получает в свое распоряжение дескриптор (или handle в системах Microsoft) этого файла. Дескриптор файла является ссылкой на файл в таблице открытых файлов и используется в запросах прикладной программы на чтение-запись из этого файла. Запись в таблице открытых файлов указывает через систему аллокации блоков диска на блоки данного файла. Если к моменту открытия файл уже используется другим процессом, то есть содержится в таблице открытых файлов, то, после проверки прав доступа к файлу может быть организован совместный доступ. При этом новому процессу также возвращается дескриптор — ссылка на файл в таблице открытых файлов. Логическая организация файловой системы
Одной из основных задач операционной системы является предоставление удобств пользователю при работе с данными, хранящимися на дисках. Для этого ОС подменяет физическую структуру хранящихся данных некоторой удобной для пользователя логической моделью. Логическая модель файловой системы материализуется в виде дерева каталогов, выводимого на экран такими утилитами, как Norton Commander или Windows Explorer, в символьных составных именах файлов, в командах работы с файлами. Базовым элементом этой модели является файл, который так же, как и файловая система в целом, может характеризоваться как логической, так и физической структурой.
Статьи к прочтению:
[Windows Server 2012 basics] Урок 15 — Файловый сервер
Похожие статьи:
-
Понятие файла и файловой системы в windows
Единицей хранения информацииявляется файл Файл (англ. file —папка) — это именованная совокупность любых данных, размещенная на внешнем запоминающем…
-
Файл — это определенное количество информации (программа или данные), имеющее имя и хранящееся в долговременной (внешней) памяти. Имя файла состоит из…