Видеографы (аппараты с цифровой обработкой рентгеновского изображения) в современной стоматологии.

      Комментарии к записи Видеографы (аппараты с цифровой обработкой рентгеновского изображения) в современной стоматологии. отключены

В стоматологии именно рентгенологическое исследование является основным диагностическим методом. Однако ряд традиционных организационно–технических особенностей рентгенодиагностики делают ее не вполне комфортной как для пациента, так и для стоматологических клиник. Это, прежде всего, необходимость контакта пациента с ионизирующим излучением, создающим часто значительную лучевую нагрузку на организм, это также необходимость фотопроцесса, а следовательно, необходимость фотореактивов, в том числе токсичных. Это, наконец, громоздкий архив, тяжелые папки и конверты с рентгеновскими пленками.

Кроме того, современный уровень развития стоматологии делает недостаточной субъективную оценку рентгенограмм человеческим глазом. Как оказалось, из многообразия оттенков серого тона, содержащегося в рентгеновском изображении, глаз воспринимает только 64.

Очевидно, что для получения четкого и подробного изображения твердых тканей зубо–челюстной системы при минимальной лучевой нагрузке нужны иные решения. Поиск привел к созданию, так называемых, радиографических систем, видеографов – систем цифровой рентгенографии.

Без технических подробностей принцип действия таких систем состоит в следующем. Рентгеновское излучение поступает через объект не на фоточувствительную пленку, а на специальный внутриоральный датчик (специальную электронную матрицу). Соответствующий сигнал от матрицы передается на преобразующее его в цифровую форму оцифровывающее устройство (аналого-цифровой преобразователь, АЦП), связанное с компьютером. Специальное программное обеспечение строит на экране компьютера рентгеновское изображение и позволяет обработать его, сохранять на жестком или гибком носителе информации (винчестере, дискетах), в виде файла распечатывать его как картинку.

В цифровой системе рентгеновское изображение представляет собой совокупность точек, имеющих различные цифровые значения градации серого тона. Предусмотренная программой оптимизация отображения информации дает возможность получить оптимальный по яркости и контрастности кадр при относительно малой дозе облучения.

В современных системах, созданными, например, фирмами Trophy (Франция) или Schick (США) при формировании кадра используется 4096 оттенков серого, время экспозиции зависит от объекта исследования и, в среднем, составляет сотые – десятые доли секунды, снижение лучевой нагрузки по отношению к пленке – до 90 % для внутриоральных систем, до 70 % для панорамных видеографов.

При обработке изображений видеографы позволяют:

1.Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.

2.Повышать контраст и увеличивать интересующий фрагмент изображения.

3.Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.

4.В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.

5.Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.

Вопрос 63.

РАДИОАКТИВНОСТЬ

Радиоактивность- самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения. Историческая справка. Беккерель. Весной 1896 французский физик А.Беккерель сделал ряд сообщений об обнаружении им нового вида излучения (впоследствии названном радиоактивным), которое испускается солями урана. Подобно открытым за несколько месяцев до этого рентгеновским лучам, оно обладало проникающей способностью, засвечивало экранированную черной бумагой фотопластинку и ионизировало окружающий воздух. Гипотеза, которая привела к открытию радиоактивности, возникла у Беккереля под влиянием исследований Рентгена. Поскольку при генерации Х-лучей наблюдалась фосфоресценция стеклянных стенок рентгеновской трубки, Беккерель предположил, что любое фосфоресцентное свечение сопровождается испусканием рентгеновского излучения. Для проверки этого предположения он поместил различные фосфоресцирующие вещества на завернутые в черную бумагу фотопластинки и получил неожиданный результат: засвеченной оказалась единственная пластинка, с которой соприкасался кристалл соли урана. Многочисленные контрольные опыты показали, что причиной засветки явилась не фосфоресценция, а именно уран, в каком бы химическом соединении он ни находился. Свойство радиоактивного излучения вызывать ионизацию воздуха позволило наряду с фотографическим методом регистрации применять более удобный электрический метод, что значительно ускорило процесс исследований.

Альфа распад

?-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и ?-частицу (ядро атома 4He).

?-распад, как правило, происходит в тяжёлых ядрах с массовым числом А?140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные ?-частицы, состоящие из двух протонов и двух нейтронов. Образовавшаяся ?-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно ?-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера экспоненциально уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.

В результате ?-распада элемент смещается на 2 клетки к началу таблицы Менделеева, массовое число дочернего ядра уменьшается на 4.

Альфа излучение.

В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5 см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение — это поток положительно заряженных частиц, для которых отношение заряда к массе (e/m) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия.

Вопрос 64.

Бета распад

Беккерель доказал, что ?-лучи являются потоком электронов. ?-распад — это проявление слабого взаимодействия.

?-распад (точнее, бета-минус-распад, ? ? -распад) — это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино.

?-распад является внутринуклонным процессом. Он происходит вследствие превращения одного из d-кварков в одном из нейтронов ядра в u-кварк; при этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:

После ? ? -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.

Существуют также другие типы бета-распада. В позитронном распаде (бета-плюс-распаде) ядро испускает позитрон и нейтрино. При этом заряд ядра уменьшается на единицу (ядро смещается на одну клетку к началу таблицы Менделеева). Позитронный распад всегда сопровождается конкурирующим процессом — электронным захватом (когда ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу). Однако обратное неверно: многие нуклиды, для которых позитронный распад запрещён, испытывают электронный захват. Наиболее редким из известных типов радиоактивного распада является двойной бета-распад, он обнаружен на сегодня лишь для десяти нуклидов, и периоды полураспадов превышают 1019 лет. Все типы бета-распада сохраняют массовое число ядра.

Бета излучение

Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны

Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке..

Вопрос 65.

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом[3]:

Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

из чего с помощью теоремы Бернулли учёные сделали вывод[источник не указан 114 дней]:

Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Период полураспада.

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.

Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.

Период полураспада — продолжительность существования радиоактивного элемента, т.е. пока он не превратится в стабильный химический элемент, (конечный распада товаром любого нуклида) характеризуется периодом полураспада – интервалом времени, в течение которого число ядер данного нуклида (Nuclide) уменьшается в два раза.

На практике период полураспада определяют, измеряя активность исследуемого препарата через определенные промежутки времени. Учитывая, что активность препарата пропорциональна количеству атомов распадающегося вещества, и воспользовавшись законом радиоактивного распада, можно вычислить период полураспада данного вещества

Статьи к прочтению:

Откуда видеографы берут свои цены? Видео со свадьбы стоимость


Похожие статьи:

  • Цифровая обработка изображений

    Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Путем разбиения графического изображения на большое количество…

  • Представление изображений в цифровом виде.

    Цифровое изображение — массив данных, полученный путем дискретизации (аналого-цифрового преобразования) оригинала. Будучи закодированным с помощью…