Характеристика и назначение

      Комментарии к записи Характеристика и назначение отключены

Наибольший прогресс среди компьютерных информационных систем отмечен в области разработки экспертных систем (ЭС), основанных на использовании элементов искусственного интеллекта. Экспертные системы дают возможность менеджеру или специалисту получать консультации экспертов по любым проблемам, на основе которых этими системами накоплены знания.

Под искусственным интеллектом (ИИ) обычно понимают способности компьютерных систем к таким действиям, которые назывались бы интеллектуальными, если бы исходили от человека. Чаще всего здесь имеются в виду способности, связанные с человеческим мышлением. Работы в области искусственного интеллекта не ограничиваются экспертными системами. Они также включают в себя создание роботов, систем, моделирующих нервную систему человека, его слух, зрение, обоняние, способность к обучению.

Решение специальных задач требует специальных знаний. Однако не каждая компания может себе позволить держать в своем штате экспертов по всем связанным с ее работой проблемам или даже приглашать их каждый раз, когда проблема возникла. Главная идея использования технологии экспертных систем заключается в том, чтобы получить от эксперта его знания и, загрузив их в память компьютера, использовать всякий раз, когда в этом возникнет необходимость. Являясь одним из основных приложений искусственного интеллекта, экспертные системы представляют собой компьютерные программы, трансформирующие опыт экспертов в какой-либо области знаний в форму эвристических правил (эвристик). Эвристики не гарантируют получения оптимального результата с такой же уверенностью, как обычные алгоритмы, используемые для решения задач в рамках технологии поддержки принятия решений. Однако часто они дают в достаточной степени приемлемые решения для их практического использования. На практике ЭС используются прежде всего как системы-советчики в тех ситуациях, где специалист сомневается в выборе правильного решения. Экспертные знания, хранящиеся в памяти системы, более глубокие и полные, чем соответствующие знания пользователя.

Сходство информационных технологий, используемых в экспертных системах и системах поддержки принятия решений, состоит в том, что обе они обеспечивают высокий уровень поддержки принятия решений. Однако имеются три существенных различия. Первое связано с тем, что решение проблемы в рамках систем поддержки принятия решений отражает уровень ее понимания пользователем и его возможности получить и осмыслить решение. Технология экспертных систем, наоборот, предлагает пользователю принять решение, превосходящее его возможности. Второе отличие указанных технологий выражается в способности экспертных систем пояснять свои рассуждения в процессе получения решения. Очень часто эти пояснения оказываются более важными для пользователя, чем само решение. Третье отличие связано с использованием нового компонента информационной технологии – знаний.

Экспертные системы создаются для решения разного рода задач профессиональной деятельности человека, и в зависимости от этого выполняют разные функции.

ЭС в задачах интерпретации, как правило, используют информацию от датчиков для описания ситуации. В качестве примера приведем интерпретацию показаний измерительных приборов на химическом заводе для определения состояния процесса. Интерпретирующие системы имеют дело не с четкими символьными представлениями проблемной ситуации, а непосредственно с реальными данными. Они сталкиваются с затруднениями, которых нет у систем других типов, потому что им приходится обрабатывать информацию зашумленную, недостаточную, неполную, ненадежную или ошибочную. Им необходимы специальные методы регистрации характеристик непрерывных потоков данных, сигналов или изображений и методы их символьного представления.

Интерпретирующие ЭС могут обработать разнообразные виды данных. Например, системы анализа сцен и распознавания речи, используя естественную информацию, – в одном случае визуальные образы, в другом – звуковые сигналы, – анализируют их характеристики и понимают их смысл. Интерпретация в области химии использует данные дифракции рентгеновских лучей, спектрального анализа или ядерно-магнитного резонанса для вывода химической структуры веществ. Интерпретирующая система в геологии использует каротажное зондирование – измерение проводимости горных пород в буровых скважинах и вокруг них, – чтобы определить подповерхностные геологические структуры. Медицинские интерпретирующие системы используют показания следящих систем (например, значения пульса, кровяного давления), чтобы установить диагноз или тяжесть заболевания. Наконец, в военном деле интерпретирующие системы используют данные от радаров, радиосвязи и сонарных устройств, чтобы оценить ситуацию и идентифицировать цели.

ЭС в задачах прогнозирования определяют вероятные последствия заданных ситуаций. Примерами служат прогноз ущерба урожаю от некоторого вида вредных насекомых, оценивание спроса на нефть на мировом рынке в зависимости от складывающейся геополитической ситуации и прогнозирование места возникновения следующего вооруженного конфликта на основании данных разведки. Системы прогнозирования иногда используют имитационное моделирование, т.е. программы, которые отражают причинно-следственные взаимосвязи в реальном мире, чтобы сгенерировать ситуации или сценарии, которые могут возникнуть при тех или иных входных данных. Эти возможные ситуации вместе со знаниями о процессах, порождающих эти ситуации, образуют предпосылки для прогноза. Специалисты ИИ пока что разработали сравнительно мало прогнозирующих систем, возможно потому, что очень трудно взаимодействовать с имитационными моделями и создавать их.

ЭС в задачах диагностики используют описания ситуаций, характеристики поведения или знания о конструкции компонент, чтобы установить вероятные причины неправильного функционирования диагностируемой системы. Примерами служат: определение причин заболевания по симптомам, наблюдаемым у пациентов; локализация неисправностей в электронных схемах и определение неисправных компонент в системе охлаждения ядерных реакторов. Диагностические системы часто являются консультантами, которые не только ставят диагноз, но также помогают в отладке. Они могут взаимодействовать с пользователем, чтобы оказать помощь при поиске неисправностей, а затем предложить порядок действий по их устранению. Медицина представляется вполне естественной областью для диагностирования, и действительно, в медицинской области было разработано больше диагностических систем, чем в любой другой отдельно взятой предметной области. Однако в настоящее время многие диагностические системы разрабатываются для приложений к инженерному делу и компьютерным системам.

ЭС, применяемые в области проектирования, разрабатывают конфигурации объектов с учетом набора ограничений, присущих проблеме. Учитывая то, что проектирование столь тесно связано с планированием, многие проектирующие системы содержат механизмы разработки и уточнения планов для достижения желаемого проекта. Наиболее часто встречающиеся области применения планирующих ЭС – химия, электроника и военное дело.

ЭС, которые используются для решения задач наблюдения, сравнивают действительное поведение с ожидаемым поведением системы. Примерами могут служить слежение за показаниями измерительных приборов в ядерных реакторах с целью обнаружения аварийных ситуаций или оценку данных мониторинга больных, помещенных в блоки интенсивной терапии. Наблюдающие ЭС подыскивают наблюдаемое поведение, которое подтверждает их ожидания относительно нормального поведения или их предположения о возможных отклонениях. Наблюдающие ЭС по самой своей природе должны работать в режиме реального времени и осуществлять зависящую как от времени, так и от контекста интерпретацию поведения наблюдаемого объекта. Это может приводить к необходимости запоминать все значения некоторых параметров системы (например, пульса), полученные в различные моменты времени, поскольку скорость и направление изменения могут быть столь же важны, как и действительные его значения в любой момент времени.

ЭС в задачах отладки находят рецепты для исправления неправильного поведения устройств. Примерами могут служить настройка компьютерной системы с целью преодолеть некоторый вид затруднений в ее работе; выбор типа обслуживания, необходимого для устранения неисправностей в телефонном кабеле; выбор ремонтной операции для исправления известной неисправности в насосе.

ЭС в задачах ремонта аппаратуры следуют плану, который предписывает некоторые рецепты восстановления. Примером является настройка масс-спектрометра, т.е. установка ручек регулировки прибора в положение, обеспечивающее достижение оптимальной чувствительности, совместимой с правильным отношением величин пиков и их формы. Пока что было разработано очень мало ремонтных ЭС отчасти потому, что необходимость фактического выполнения ремонтных процедур на объектах реального мира дополнительно усложняет задачу. Ремонтным системам также необходимы диагностирующие, отлаживающие и планирующие процедуры для производства ремонта.

ЭС в области обучения подвергают диагностике, “отладке” и исправлению (“ремонту”) поведение обучаемого. В качестве примеров приведем обучение студентов отысканию неисправностей в электрических цепях, обучение военных моряков обращению с двигателем на корабле и обучение студентов-медиков выбору антимикробной терапии. Обучающие системы создают модель того, что обучающийся знает и как он эти знания применяет к решению проблемы. Системы диагностируют и указывают обучающемуся его ошибки, анализируя модель и строя планы исправлений указанных ошибок. Они исправляют поведение обучающихся, выполняя эти планы с помощью непосредственных указаний обучающимся.

ЭС в задачах управления адаптивно руководят поведением системы в целом. Примерами служат управление производством и распределением компьютерных систем или контроль за состоянием больных при интенсивной терапии. Управляющие ЭС должны включать наблюдающие компоненты, чтобы отслеживать поведение объекта на протяжении времени, но они могут нуждаться также и в других компонентах для выполнения любых или всех из уже рассмотренных типов задач: интерпретации, прогнозирования, диагностики, проектирования, планирования, отладки, ремонта и обучения. Типичная комбинация задач состоит из наблюдения, диагностики, отладки, планирования и прогноза.

Основные компоненты

Типичная ЭС состоит из следующих основных компонентов: решателя (интерпретатора), рабочей памяти (РП), называемой также базой данных (БД), базы знаний (БЗ), компонентов приобретения знаний, объяснительного и диалогового компонентов (рис. 2.7).

Рис. 2.7. Типовая структура экспертной системы

База данных предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах и системах управления базами данных для обозначения всех данных (и в первую очередь не текущих, а долгосрочных), хранимых в системе. База знаний в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области. Решатель, используя исходные данные из РП и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи. Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решения) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату. Диалоговый компонент ориентирован на организацию дружелюбного общения со всеми категориями пользователей как в ходе решения задач, так и приобретения знаний, объяснения результатов работы.

В разработке ЭС участвуют представители следующих специальностей:

 эксперт в той проблемной области, задачи которой будет решать ЭС;

 инженер по знаниям – специалист по разработке ЭС;

 программист – специалист по разработке инструментальных средств.

Необходимо отметить, что отсутствие среди участников разработки инженера по знаниям (т.е. его замена программистом) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его. Эксперт определяет знания (данные и правила), характеризующие проблемную, область, обеспечивает полноту и правильность введения в ЭС знаний. Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС, осуществляет выбор того инструментального средства, которое наиболее подходит для данной проблемной области и определяет способ представления знаний в этом инструментальном средстве, выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом.

Программист разрабатывает инструментальное средство, содержащее в пределе все основные компоненты ЭС, осуществляет сопряжение инструментального средства с той средой, в которой оно будет использовано.

Экспертная система работает в двух режимах: приобретения знаний и решения задач (называемом также режимом консультации или режимом использования ЭС).

В режиме приобретения знаний общение с ЭС осуществляется через посредничество инженера по знаниям. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования данными, характерные для рассматриваемой проблемной области. Эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области.

Важную роль в режиме приобретения знаний играет объяснительный компонент. Именно благодаря ему эксперт на этапе тестирования локализует причины неудачной работы ЭС, что позволяет эксперту целенаправленно модифицировать старые или вводить новые знания. Обычно объяснительный компонент сообщает следующее: как правильно используют информацию пользователя; почему использовались или не использовались данные или правила; какие были сделаны выводы и т.д. Все объяснения делаются, как правило, на ограниченном естественном языке или языке графики.

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ получения решения. Пользователь ЭС может не быть специалистом в проблемной области, для которой предназначена ЭС, в этом случае он обращается к ЭС за советом, не умея получить ответ сам, или он может быть специалистом, в этом случае он использует ЭС, чтобы либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу. Термин “пользователь” означает, что им является и эксперт, и инженер по знаниям, и программист. Поэтому, когда хотят подчеркнуть, что речь идет о том, для кого делалась ЭС, используют термин “конечный пользователь”.

В режиме консультации данные о задаче пользователя обрабатываются диалоговым компонентом, который выполняет следующие действия:

 распределяет роли участников (пользователя и ЭС) и организует их взаимодействие в процессе кооперативного решения задачи;

 преобразует данные пользователя о задаче, представленные на привычном для пользователя языке, на внутренний язык системы;

 преобразует сообщения системы, представленные на внутреннем языке, в сообщения на языке, привычном для пользователя (обычно это ограниченный естественный язык или язык графики).

После обработки данные поступают в рабочую память. На основе входных данных в рабочей памяти, общих данных о проблемной области и правил из базы знаний решатель (интерпретатор) формирует решение задачи. В отличие от традиционных программ ЭС в режиме решения задачи не только исполняет предписанную последовательность операций, но и предварительно формирует ее. Если ответ ЭС не понятен пользователю, то он может потребовать объяснения, как ответ получен.

Экспертные системы вбирают в себя знания, необходимые инженерам, юристам, ученым при разработке или создании нового продукта. Их работа заключается в создании новой информации и нового знания. Так, например, существующие специализированные рабочие станции по инженерному и научному проектированию позволяют обеспечить высокий уровень технических разработок.

Типичным образцом информационной системы обработки знаний в области компьютерных систем может служить экспертная система XCON, одна из первых и наиболее успешно применяемых разработок этого рода. Она была создана корпорацией DEC и Университетом Карнеги-Меллон и используется для проектирования конфигурации компьютеров.

MYCIN – это экспертная система, разработанная для медицинской диагностики и принятия решения. В частности, она предназначена для работы в области диагностики и лечения заражения крови и медицинских инфекций. Система ставит соответствующий диагноз, исходя из представленных ей симптомов, и рекомендует курс медикаментозного лечения любой из диагностированных инфекций. MYCIN не выдает диагноз и не раскрывает его точный показатель неопределенности. Система выдает целый список диагнозов, называя показатель определенности для каждого из них. Все диагнозы с показателями выше определенного специфического для каждого диагноза уровня принимаются как в той или иной степени вероятные, и пользователю вручается список возможных исходов.

DENDRAL – это старейшая экспертная система в мире. Эта система автоматизирует процесс определения химической структуры вещества. В самых общих чертах процесс принятия решения следующий. Пользователь дает системе DENDRAL некоторую информацию о веществе, а также данные спектрометрии (инфракрасной, ядерного магнитного резонанса и масс-спектрометрии), и та, в свою очередь, выдает диагноз в виде соответствующей химической структуры.

На выходе первой системы имеется не один простой ответ. Обычно это целая серия возможных структур – программа не в состоянии точно сказать, какая из них верна. Затем DENDRAL “берет” каждую из этих структур по очереди и использует вторую экспертную систему, чтобы определить для каждой из них, каковы были бы результаты спектрального анализа, если бы это вещество существовало и было на самом деле исследовано по спектрограмме.

PROSPECTOR – это экспертная система, поддерживающая решения при поиске коммерчески оправданных месторождений полезных ископаемых. Методы этой системы являются одними из лучших среди всех разработанных методов для любой из существующих ныне систем.

Статьи к прочтению:

Винтовые сваи. Характеристики и назначение.


Похожие статьи: