Информация. передача информации.

      Комментарии к записи Информация. передача информации. отключены

Негосударственное образовательное учреждение

Среднего профессионального образования

«Нефтяной техникум»

КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«Информационные технологии в профессиональной деятельности »

ТЕМА: «Информация. Передача информации»

Варианта 16

Выполнил(а) студент(ка)заочного отделения2 курса группы Б 14Специальность: Дата выполнения: Никитин Никита Алексеевич« Бурение нефтяных и газовых скважин » «___ »___________ 2016 г.
Проверил преподаватель: Хотеев П. Г.В результате рецензированияполучил оценку: __________, имеются замечания:___________________________________________________________________________________________________________________________________________________________________________
Контрольную работу принял(а)_______________________________Дата принятия: «___»_______2016 г.Рег. №_________________________

Ижевск

Г.

Содержание

1) Введение……………………………………………………………….3

2) Информация. Передача информации………………………………10

3) Современные информационные технологии в нефтяной и газовой промышленности. Программные продукты и средства автоматизации с помощью ЭВМ для транспорта нефти и газа. Программные продукта при проектировании , строительстве трубопроводов и резервуарных парков. Программные продукты для обработки результатов исследования при технической диагностике состояния трубопроводов……………………………17

4) Список литературы………………………………………………….20

Введение.

Информатизация – это производное от слова информация. Информатизация – это процесс получения, использования, хранения, передачи информации.

На протяжении ХХ века сменялось множество способов обмена информацией. Если в XIX веке носителем информации была бумага, а средством передачи была почтовая служба, то в ХХ веке информация стала передаваться гораздо быстрее с помощью телеграфа, в голосовой форме обмениваться информацией можно по телефону, радио и телевидение призваны только для получения человеком информации. В наши дни есть огромное количество способов передачи информации, причем в любой форме. Телефонные линии до сих пор остаются самым удобным средством передачи информации, но теперь ими обслуживаются не только телефоны, но и самое большое достижение процесса информатизации – Internet, содержащий большую часть информации со всей планеты.

Сейчас информатизация не мыслима без компьютера, так как он изначально создавался как средство обработки информации и только теперь он стал выполнять множество других функций: хранение, преобразование, создание и обмен информацией. Но прежде чем принять привычную сейчас форму компьютер претерпел три революции. Первая компьютерная революция свершилась в конце 50-х годов; ее суть можно описать двумя словами: компьютеры появились. Изобретены они были не менее чем за десять лет до этого, но именно в то время начали выпускаться серийные машины, эти машины перестали быть объектом исследований для ученых и диковинкой для всех остальных. Через полтора десятилетия после этого ни одна крупная организация не могла себе позволить обходиться без вычислительного центра. Если тогда заходила речь о компьютере, сразу же представлялись заполненные стойками машинные залы, в которых напряженно думают люди в белых халатах. И тут свершилась вторая революция. Практически одновременно несколько фирм обнаружили, что развитие техники достигло такого уровня, когда вокруг компьютера не обязательно воздвигать вычислительный центр, а сам он стал небольшим. Это были первые мини-ЭВМ. Но прошло еще десять с небольшим лет, и наступила третья революция – в конце 70-х возникли персональные компьютеры. За короткое время, пройдя путь от настольного калькулятора до полноценной небольшой машины, ПК заняли свои места на рабочих столах индивидуальных пользователей.

Компьютер – это самое популярное средство для обработки, хранения и передачи информации и по сей день, но так как в наши дни информации становится все больше, то и компьютеры претерпевают значительные изменения. Для удобства пользователей стали выпускаться, переносные и карманные компьютеры, подключенные к глобальной информационной сети Internet, чтобы пользователь мог получить необходимую информацию в любом месте, в удобное для него время. Но так как потоки информации только увеличиваются то для ее создания, обработки, хранения и передачи необходимо разрабатывать все новые и новые средства и приспособления. Существует множество компаний и корпораций, специализирующихся на разработках программного обеспечения, операционных систем, усовершенствовании и разработке новых более совершенных компьютеров, приспособлений для ввода и вывода информации, аксессуаров для удобства обращения с компьютером и ускорения обработки информации. Что касается самой информации, то до сих пор одним из наиболее важных способов ее передачи между людьми служит документ. Информация, содержащаяся в документе, может быть предоставлена в различных формах, большая часть из которых отображается на различных носителях. Текст, графика, видео, аудио – все может быть передано, показано, распространено и обработано в виде цифрового файла документа.

Рукопись симфонии Моцарта, находящаяся в музее Зальцбурга, — это документ. Компакт-диск, на котором Венский симфонический оркестр исполняет названную симфонию, — это аудиодокумент, содержащий добавочную информацию, зависящую от интерпретации дирижера. Видеозапись концерта – еще один документ. Но в их основе лежит одна и та же информация. Отличие заключается в виде носителя, который выбирается в зависимости от того, какой эффект должен быть получен при ее восприятии конечным пользователем. Сейчас, когда процесс создания и преобразования документов автоматизирован, можно оценить все преимущества этого метода. Каждый, кто работает с компьютером и имеет принтер, зачастую производит гораздо больше документов, чем его неавтоматизированный коллега. Это объективная реальность – автоматизация повышает производительность труда. Но есть виды весьма важных бумажных документов, у которых может не быть электронного двойника.

Первая группа – это архивная информация. У каждого предприятия, фирмы имеется большое количество разработок в виде схем или чертежей и все они должны храниться в течение всего жизненного цикла изделия или могут использоваться как справочный материал, либо их хранения требует существующее законодательство. Архивная информация составляет львиную долю документов любого предприятия, и она всегда ценна, а иногда незаменима. Но, как правило, она не участвует в основном производственном процессе.

Вторая группа – чертежи выпускаемых изделий, разработанные без применения средств автоматизации. Обновление или редактирование этих чертежей – активная часть рабочего процесса. Увы, чертежи, выполненные на бумаге, приходится перечерчивать заново с использованием средств САПР.

Третья группа – документы ваших партнеров по бизнесу. Более того, зачастую бумажный документ является единственным носителем исходной информации для автоматизированных систем. Например, эскиз дизайнера, результат топографической съемки, рисунок художника, а так же архивные чертежи изделий, которые будут частично или полностью использоваться в новых проектах.

Не все виды бумажных документов одинаково ценны: одни требуются только для просмотра, вторые – для периодического внесения изменений, третьи служат основой для производственного процесса. Обработка, хранение и поддержание в рабочем состоянии чертежей, выполненных вручную на бумаге, трудны и отнимают много времени и средств. Такие чертежи подвержены износу и старению. Копии на бумаге со временем выцветают. Согласно оценкам при обработке вручную каждая компания теряет 10 – 15 % имеющейся технической документации. Стоимость хранения чертежей весьма значительна, поэтому многие компании, внедрившие системы управления документооборотом, значительно сократили свои расходы на содержание архива. К тому же, минимизация объема архива бумажных документов и увеличение доли электронных документов в производственном процессе – это очевидный путь к росту прибыли. Документ может превратить то, что всегда рассматривалось как деловой процесс, в деловой объект (элемент). В цифровой или бумажной форме, документы – это не просто записи, а механизмы, в которых информация создается, структурируется, взаимодействует и сохраняется. Без документов бизнес, как мы его понимаем сегодня, просто не возможен. Поскольку документ – постоянно обращающаяся сущность, которую люди используют вновь и вновь в виде различных форм и представлений, при автоматизации работы с ним необходимо охватить все этапы его жизненного цикла: ввод (получение и сканирование), управление (архивирование, представление, создание, воспроизведение, суммирование, аннотирование, авторизация, аутентификация, расчет затрат и т. д.) и вывод (цифровое распространение, печать и дублирование, просмотр и использование).

Документы – интеллектуальный капитал предприятия. Чтобы работать успешно, компании должны в нужный момент создавать, получать, корректировать, применять и распространять этот интеллектуальный капитал. Различные фирмы и корпорации разрабатывают системы управления документами и служебные средства, которые предназначены для решения данной задачи. С помощью этих пакетов компании смогут более эффективно использовать свои ресурсы, улучшать продукцию и предлагать лучший сервис. Программы различных компьютерных корпораций охватывают все уровни – от отдельного сотрудника, рабочей группой и до предприятия в целом, автоматизируя и ускоряя обработку документов за счет повышения производительности труда. Будучи однажды созданы, элементы документов (объекты) могут повторно использоваться много раз. Программное обеспечение обработки документов позволяет получать более высококачественные документы. С помощью программного обеспечения управление документооборотом их можно организовывать. Распространять документы проще с применением системы распределения заданий. Больший результат можно получить от документов, использующих цвет. Печать по требованию обеспечивает ориентированность документов на конкретного пользователя и повышает эффективность работы. Перенос большей части производственного процесса, в котором появляются новые разработки, идеи, требующие разработки на специальных программах, которые в свою очередь тоже совершенствуются и занимают в компьютере все больше дискового пространства, ставит задачу – увеличение того самого дискового пространства, оперативной памяти, нового программного обеспечения. Это подталкивает компьютерные корпорации на все новые разработки, например, в области обмена большим количеством данных между компьютерами, не подключенными к сети.

Можно ли взять с собой целый гигабайт данных? Конечно, можно, причем на самых разнообразных носителях. Сегодня для этого возможностей больше, чем когда-либо. Обычная дискета 1,44 Мбайт, которая была основным средством для переноса информации в 80 – 90-е годы, не в состоянии уместить многомегабайтные таблицы или файлы с презентациями, даже если их упаковать. А чтобы с ее помощью передать своему коллеге большую многобайтную реляционную базу данных, и думать не стоит. К счастью существует значительное количество высокоемких флоппи- подобных носителей, которые пригодятся в качестве дополнения к жесткому диску или для переноса файлов с данными и приложений из дома в офис и обратно. Объемы таких информационных носителей варьируются от 100 Мбайт (чего вполне достаточно для хранения большой презентации) до 1,5 Гбайт (этого хватит для записи базы данных среднего размера). Эти устройства выпускаются во внутреннем исполнении (монтируются внутри компьютера) и внешнем переносном (подключаются к параллельному порту). Некоторые накопители имеют столь же высокое быстродействие, как жесткие диски, а отдельные сравнимы с ними по объему. Многие просты в установке, и все несложны в эксплуатации. И что самое главное – сменные носители этих накопителей такие же компактные, как 3,5-дюймовые дискеты. Также для переноса с компьютера на компьютер и архивирования больших объемов информации подходит технология компакт-дисков с записью (CD-ROM). Компакт-диски с однократной записью позволяют самостоятельно создавать собственные диски CD-ROM. Любой накопитель CD-ROM способен читать компакт- диски, содержащие до 650 Мбайт информации. Преимущество памяти на CD-ROM состоит в том, что она универсальна, так как в настоящее время почти в каждом ПК установлен накопитель CD-ROM. Несмотря на удобство компакт-дисков CD-ROM, в связи с необходимостью использования максимально большого объема информации, уже начинается процесс их вытеснения. Начинается штурм рынка настольных ПК оптическим диском нового формата – DVD (Digital Video Disk – цифровой видеодиск). DVD- диски и проигрыватели DVD-DOM очень похожи на компакт-диски и накопители CD-ROM, но у них есть одно важное преимущество: информационная емкость компакт- диска не превышает 650 Мбайт, а на DVD-диске первого поколения можно хранить до 4,7 Гбайт данных, что достаточно для воспроизведения двухчасового фильма кинематографического качества, и при этом на диске еще останется свободное пространство. На DVD-дисках последующих поколений можно хранить до 17 Гбайт данных, более того устанавливаемые в ПК проигрыватели DVD-ROM пригодны для воспроизведения как выпускаемых в настоящее время дисков CD-ROM, так и кинофильмов для домашних кинотеатров, выпускаемых фирмами бытовой техники.

Однако для пользователей компьютеров технология DVD означает нечто большее, чем просто просмотр фильмов. Поставщики программ смогут размещать многочисленные программные продукты (базы данных телефонных номеров, картографические программы, энциклопедии) всего лишь на одном диске, что облегчает работу с этими материалами.

Информация. Передача информации.

Информа?ция — сведения, воспринимаемые человеком или специальными устройствами как отражение фактов материального мира в процессе коммуникации

Определения понятия «информация» из международных стандартов:

  • знания о предметах, фактах, идеях и т. д., которыми могут обмениваться люди в рамках конкретного контекста (ISO/IEC 10746-2:1996)[3];
  • знания относительно фактов, событий, вещей, идей и понятий, которые в определённом контексте имеют конкретный смысл(ISO/IEC 2382-1:1993)[4].

Определений информации существует множество, причём академик Н. Н. Моисеев даже полагал, что в силу широты этого понятия нет и не может быть строгого и достаточно универсального определения информации. Хотя информация должна обрести некоторую форму представления (то есть превратиться в данные), чтобы ей можно было обмениваться, информация есть в первую очередь интерпретация (смысл) такого представления (ISO/IEC/IEEE 24765:2010). Поэтому в строгом смысле информация отличается от данных, хотя в неформальном контексте эти два термина очень часто используют как синонимы. Первоначально «информация» — сведения, передаваемые людьми устным, письменным или другим способом (с помощью условных сигналов, технических средств и т. д.); с середины XX в. термин «информация» превратился в общенаучное понятие, включающее обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом; обмен сигналами в животном и растительном мире; передачу признаков от клетки к клетке, от организма к организму (например, генетическая информация); одно из основных понятий кибернетики. Передача информации — физический процесс, посредством которого осуществляется перемещение знаков (сведений, способных предоставлять информацию) в пространстве или осуществляется физический доступ субъектов к знакам. Передача информации — заблаговременно организованное техническое мероприятие, результатом которого становится воспроизведение информации, имеющейся в одном месте, условно называемом «источником информации», в другом месте, условно называемом «приёмником информации». Данное мероприятие предполагает предсказуемый срок получения указанного результата («информация» здесь понимается в техническом аспекте, как осмысленное множество символов, чисел, параметров абстрактных или физических объектов, без достаточного «объёма» которого не могут быть решены задачи управления, выживания, развлечения, совершения преступлений или денежных операций). Для осуществления передачи информации необходимо наличие, с одной стороны, так называемого «запоминающего устройства», или «носителя», обладающего возможностью перемещения в пространстве и времени между источником и приёмником. С другой стороны, необходимы заранее известные источнику и приемнику правила и способы нанесения и снятия информации с носителя. С третьей стороны, носитель должен продолжать существовать как таковой к моменту прибытия в пункт назначения. (к моменту окончания снятия с него информации приёмником). В качестве «носителей» на современном этапе развития техники используются как вещественно-предметные, так и волново-полевые объекты физической природы. Носителями могут быть при определённых условиях и сами передаваемые информационные объекты (виртуальные носители). Передача информации в повседневной практике осуществляется по описанной схеме как вручную, так и с помощью различных автоматов. Во множестве разновидностей технической реализации.

При построении систем передачи информации может передаваться не только информация о физических объектах, но и информация о подготовленных к передаче носителях. Таким образом, организуется иерархическая «среда передачи» с любой глубиной вложенности (не путать со средой распространения волновых носителей).

Из множества возможных сообщений выбирается одно и кодируется. Закодированное сообщение поступает в канал связи и под воздействием помех этого канала превращается в искаженное сообщение. На приемном конце канала связи необходимо провести декодирование сообщения, но сначала необходимо ликвидировать искажение. Одна из важных задач, решаемых в теории кодирования, — это разработка специальных корректирующих кодов, которые позволяют находить и исправлять ошибки, возникающие при передаче сообщений. Каждое звено этой схемы может быть представлено каким-нибудь устройством. Соединяясь, они образуют систему связи и передачи информации. Для того, чтобы осуществить схему Шеннона, информация, поступающая обычно непрерывно (звук, изображение), должна быть представлена в дисперсном виде, т.е. разделена на мелкие части, для кодирования. Информация передается нам по различным каналам — электрическим и телефонным проводам, радиоволнам и т.п.

Скорость передачи данных — скорость, с которой передается или принимается информация в двоичной форме. Обычно скорость передачи данных измеряется количеством бит, переданных в одну секунду.

Биты в секунду — единица скорости передачи информации, равная количеству двоичных разрядов, пропускаемых каналом связи в 1 секунду с учетом и полезной и служебной информации.

Пропускная способность канала связи — максимальная скорость передачи данных от источника к получателю.

Символы в секунду — единица измерения скорости передачи (только) полезной информации.

Кодирование — инструмент преобразования информации.

Кодирование текстовой информации

Всякий текст – это набор знаков. Но компьютер не может различать знаки, он “понимает” только язык электрических сигналов. Поэтому каждый знак в компьютере закодирован некоторой неповторимой последовательностью электрических сигналов, а им, в свою очередь, установлено цифровое соответствие – код. Нажимая на клавишу клавиатуры, мы посылаем такой код в память компьютера, затем процессор ищет ему соответствие и выдаёт необходимый знак на экран монитора.

Процесс преобразования в компьютере текстовой информации в цифровую форму и обратно называют текстовым кодированием. Таким образом, человек различает знаки по их начертанию, а компьютер – по их коду. Коды составляют таблицу кодировки, к которой и обращается процессор при обработке текстов. В этой таблице для представления любого текста предусмотрено 28 (256) знаков, что составляет машинный алфавит. Первые 33 кода таблицы (с 0 по 32) отведены не для знаков, а для операций (перевод строки, ввод пробела и т. д.). Коды с 33 по 127 – интернациональные и соответствуют символам латинского алфавита, цифрам, знакам препинания и знакам арифметических действий. Коды с 128 по 255 являются национальными, то есть в нашей стране отведены для знаков кириллицы. На сегодняшний день существует универсальная таблица кодировки – ASCII (American Standart Code for Information Interchange). Но она не единственная. Для русских букв существует несколько кодировок, среди которых: СР1251 (Windows), СР866, КОИ-8 (MS-DOS). В последнее время появился новый международный стандарт Unicode, который позволяет кодировать 216 (65536) символов.

Кодирование графической информации

Графическая информация в зависимости от способа формирования на экране монитора бывает растровой и векторной. Растровое изображение похоже на лист клетчатой бумаги, на котором каждая клетка закрашена определённым цветом (и это роднит его с мозаикой, витражами, вышивкой крестом, рисованием «по клеточкам»). Растровая графика предполагает, что изображение состоит из элементарных частей, называемых пикселями («точками»). Они упорядочены по строкам. Количество таких строк на экране образует графическую сетку или растр. Таким образом, растровое изображение – это набор пикселей, расположенных на прямоугольной сетке.

Чем меньше пиксель и больше растр у монитора, тем качественнее его изображение. Наибольшее распространение в современных мониторах получили размеры сетки:800х600, 1024х768, 1152х864. Важной характеристикой монитора является также разрешающая способность экрана. Она измеряется как количество пикселей на единицу длины, dpi (dots per inch – «точка на дюйм»). Для экрана обычно это 72 или 96 dpi, (для сравнения — у лазерного принтера – 600 dpi). Чем больше dpi, тем меньше зернистость монитора, лучше качество изображения. Не менее важным признаком изображения является количество цветов, обеспечиваемое видеокартой. Его можно менять программно (в пределах возможностей видеокарты), выбирая режим цветного изображения:
— чёрно-белое или битовое (0 – белый цвет, 1 – чёрный цвет);
— 16 цветов(4 бита информации в пикселе, 24);
— 256 цветов (8 бит информации в пикселе, 28);
— high color (16 бит информации в пикселе, 65 536 цветов);
— true color (32 бита информации в пикселе, 16 777 216 цветов). Количество различных цветов К и количество битов для их кодирования b связаны формулой К=2b Так же, как в телевизоре, в мониторе компьютера цветное изображение строится при помощи трёх основных цветов. RGB (аббревиатура английских слов Red, Green, Blue — красный, зелёный, синий) — цветовая модель, описывающая способ синтеза цвета. В зависимости от разрешения экрана и количества установленных цветов для преобразования изображений в двоичный код требуется некоторый объём памяти. Например, для сетки 800х600 и цветности high color требуется: 800х600х16бит = 480000х2байт — около 1 мегабайта. Это -видеопамять. Её предоставляет видеоадаптер в дополнение к имеющейся внутренней памяти ПК. Из неё цифровое изображение считывается процессором с частотой не реже 50 раз в секунду (50 Гц) и отображается на экране. Таким образом, от возможностей видеоадаптера и монитора во многом зависит построение изображения на экране и его качество.

Кодирование звука

Звук – это явление аналогового (непрерывного) характера. Колебания воздуха вызывают звуковые волны, которые могут быть представлены графиком в виде синусоиды. Но для представления звука в ПК исходный непрерывный звуковой сигнал надо разбить на части, чтобы закодировать — оцифровать. Чем мельче частицы (больше разбиений), тем точнее передача звука, меньше потери его качества (хотя полностью этого избежать нельзя). Качество кодирования определяется частотой дискретизации и уровнем кодирования. Частота дискретизации – это количество измерений уровня сигнала в единицу времени (секунду). Она может находиться в пределах от 8000 до 48000, то есть от 8 до 48 кГц. При частоте 8 кГц качество цифрового звука сравнимо со звуком радиотрансляции, а при 44,1 кГц (48 кГц) – со звуком аудио CD. Одновременно с временной дискретизацией (частотой) выполняется и амплитудная, то есть измерение значений амплитуды и их представление в виде чисел с определенной точностью (квантование). Эта величина называется уровнем кодирования звука и обычно составляет 16 бит, то есть каждому значению амплитуды звуковой волны соответствует двоичное число в 16 разрядов. При оцифровке звука возможны моно- и стереорежимы. Получаемый поток двоичных чисел, описывающий звуковой сигнал, называют импульсно-кодовой модуляцией или ИКМ (PCM — Pulse Code Modulation). Такое преобразование звука происходит в аудиоадаптерах (звуковых картах), специальных устройствах расширения, которыми нужно оснастить аппаратную составляющую мультимедиа. Будучи преобразован в цифровую форму, звуковой сигнал застывает — в этом виде он уже не подвержен изменениям при хранении и копировании, как обычная аналоговая запись. Если с цифровым звуковым сигналом обращаться аккуратно — его можно хранить вечно и копировать любое число раз без какой-либо потери качества.

Современные информационные технологии в нефтяной и газовой промышленности. Программные продукты и средства автоматизации с помощью ЭВМ для транспорта нефти и газа. Программные продукты при проектировании , строительстве трубопроводов и резервуарных парков. Программные продукты для обработки результатов исследования при технической диагностике состояния трубопроводов.

Системы измерения количества и параметров качества нефти (узлы учета нефти) далее СИКН, предназначены для автоматизированого (оперативного или коммерческого) учета при сдаче нефти от Поставщика Покупателю или при внутри-хозяйственном учете.

Статьи к прочтению:

Способы передачи информации


Похожие статьи: