Эволюция микросхем памяти.

      Комментарии к записи Эволюция микросхем памяти. отключены

Эволюция микросхем ОЗУ вплотную связана с эволюцией персональных компьютеров. Для успеха настольных компьютеров требовались миниатюрные чипы

ОЗУ. По мере увеличения ёмкости памяти цена скачкообразно возрастала, но потом постоянно уменьшалась по мере отработки технологии и роста объёмов производства.

Первые PC реализовывались на стандартных RAM-чипах по 16 Кбит. Каждому биту соответствовал свой собственный адрес. Где-то около года после представления XT появилось ОЗУ с большими возможностями и более эффективное с точки зрения его цены. Хотя новые микросхемы могли вмещать по 64 Кбит, она были дешевле чем 4 по 16 Кбит. Системная плата PC была создана с учётом использования новых микросхем памяти. Через несколько лет 64 К битные чипы стали настолько широко распространены, что стали дешевле чем 16 К битные микросхемы. К 1984 году был сделан ещё один шаг по увеличению объёма памяти в одном корпусе — появились 256 — К битные микросхемы. И RAM чипы этого номинала были установлены на первых AT.

А сегодня микросхемы в 16 Мбит стали обычным явлением. PC имел довольно простую архитектуру памяти, по крайней мере, если на неё смотреть сейчас с высоты последних достижений компьютерной индустрии. Память PC была представлена одним блоком, в котором каждый байт был доступен по указанию его адреса. Микросхемы памяти были разбиты на 9 банков, использующих в ранних PC 16-Кбитные, а затем и 64-Кбитные микросхемы.

Восемь микросхем выделяли по одному биту для организации каждого байта памяти, девятая микросхема использовалась в качестве контрольного бита чётности. Когда микропроцессор 80286 стали использовать в AT и их аналогах, возникла проблема с организацией архитектуры памяти. Обычные микросхемы памяти не могли работать в таком быстром темпе, в котором работал микропроцессор. Поэтому пришлось использовать статус ожидания, в случае когда процессор требовал информацию из памяти, то есть микропроцессору приходилось зависать на один-два такта, что давало возможность памяти обработать запрос.

Когда — то всё было просто: частота центральных процессоров не превышала 10

МГц, что позволяло для системы ОЗУ применять микросхемы с временем доступа

100 нс., а то и больше. Кроме того, операционные системы и прикладные программы были нетребовательны к памяти: все они отлично работали с объёмом

ОЗУ до 640 Кбайт.

Естественно, что тогда особого внимания объёму память никто не уделял. Даже при работе с оперативной памятью используется обычная системная шина PS — bus или ISA. Проблемы возникли после появления процессоров линии 80386: тактовая частота последних составляла от 16 до 33 (а позднее 40) МГц. Не сложно подсчитать, что при этом длина такта находится в диапазоне от 25 до

60 нс., что существенно меньше, чем у распространённых на тот момент микросхем DRAM. Новые прикладные программы постоянно требовали всё большего объёма ОЗУ, что повышало требования к скорости обмена с памятью. В сложившейся ситуации память стала одним из важнейших факторов, влияющих на повышение быстродействия компьютеров. Путём введения отдельной шины памяти удалось лишь немного увеличить быстродействие, т.к. тактовая частота ISA до сих пор фиксирована на 8 МГц. К тому же отдельная шина была 32-разрядной как новые процессоры. После этого появились сложности с быстродействием самих микросхем. Переход на чисто статическое ОЗУ был не выгоден: цена готового компьютера возросла бы на порядок, а то и более.

Именно тогда в РС стали активно применять кэш-память, сначала одноуровневую, а затем (после появления процессора j486)- двухуровневую.

Впрочем, это не могло значительно улучшить ситуацию: нужно было увеличить быстродействие всего объёма оперативной памяти и в то же время сохранить старую элементарную базу. Изменение ситуации коренным образом было невозможно: несмотря на все попытки даже сейчас полный цикл доступа к случайной ячейки ОЗУ составляет не менее 50 нс. Разработчики поставили задачу: ускорить по крайней мере наиболее часто встречающиеся операции. Как показывает практика, чаще всего доступ к ячейкам памяти происходит не случайным образом, а последовательно.

Прогресс технологии

С современными задачами SDRAM в принципе справляется неплохо. Однако уже в ближайшее время её возможностей может оказаться недостаточно. Во-первых, это касается скорости её работы, которую неплохо бы увеличить уже сегодня.

А во-вторых, важно дальнейшее повышение рабочей частоты, хотя это становится очевидным не сразу. Дело в том, что повышать внутреннюю частоту центрального процессора путём увеличения множителя занятие не благодарное: на определённом этапе может появиться более дорогой процессор, чем существующая модель, но при этом практически не повышающий быстродействие системы ( которое зависит не только от скорости работы процессора, но и от частоты работы материнской платы). В этой связи очень показательна ситуация с компьютером на базе Intel Pentium 166 и 200. В своё время их стоимость отличалась в значительной степени, а по части производительности системы разрыв получался порядка 5% . Линию Pentium II пока спасает встроенный кэш второго уровня, но надолго ли его хватит? Скорее всего, недавно выпущенный

Pentium II 500 станет последним в ряду процессоров с внешней частотой 100

МГц. это косвенно подтверждает и Intel, объявив, что для новых процессоров разрабатывается шина с частотой 200 МГц. а возможностей классической SDRAM уже недостаточно.

Один из выходов в применении разработанной компанией Samsung памяти типа Double Data Rate SDRAM, называемой также SDRAM II. Ныне она уже стандартизирована ассоциацией и поддерживается некоторыми чипсетами.

Благодаря отдельным косметическим улучшениям, данная память способна работать на частоте 200 МГц и обеспечивает в два раза большую производительность, чем SDRAM.

Ещё более производительной будет память SLDRAM. Она работает не с четырьмя, а с шестнадцатью банками и поддерживает частоту до 400 МГц. впрочем, это лишь проект, проводимый группой из двенадцати крупнейших производителей DRAM. Выход новой памяти на рынок ожидается в ближайшее время, пока имеются лишь образцы. Межотраслевой стандарт отсутствует.

Поскольку процессоры некоторых архитектур уже перешагнули барьер в 1 ГГц повышение в будущем тактовой частоты обеспечиваемой SLDRAM даже до 400 МГц, будет не достаточно необходимо по меньшей мере 600 МГц. Пропускная способность 400 Мбайт/с тоже невелика: до сих пор, разрабатываются новые микросхемы памяти, все пытаются угнаться по быстродействию за процессорами, но ни о каком запасе скорости на пару-тройку лет развития и речи нет, а потребность в этом уже ощущается.

В общем обычные микросхемы DRAM просто не способны работать в необходимом сейчас режиме, поэтому нужен переход на новую технологию, которая уже предложена фирмой Rambus и называется RDRAM. У неё масса весьма существенных отличий от обычной памяти. Первоначальный вариант RDRAM, применённый в графических рабочих станциях ещё в 1995 году. По возможностям

(600 МГц частота и 600 Мбайт/с пропускная способность) обгоняет SLDRAM, который ещё год придётся ждать.

В1997 году появилась улучшенная спецификация Concurrent RDRAM — по скорости она аналогична предыдущей, однако показывает хорошие результаты даже на маленьких блоках. Благодаря отличным характеристикам новой памяти, её лицензировало огромное количество производителей. уже сей час она применяется в мощных игровых приставках и многих платах расширения для РС.

Данный проект получил поддержку Intel ещё в 1996 году. В следующем году фирма Rambus продемонстрирует новое улучшение RDRAM, которое называется Direct RDRAM. Память этого типа будет способна работать на частоте до 800 МГц, обеспечивая быстродействие 1,6 Гбайта/с для однобанкового модуля и 3,2 Гбайта для двухбанкового.

Статьи к прочтению:

Эволюция. Оперативная память (часть 2)


Похожие статьи: