Классификация грамматик и языков по хомскому

      Комментарии к записи Классификация грамматик и языков по хомскому отключены

Формальные грамматики и языки.

Элементы теории трансляции.

(издание второе, переработанное и дополненное)

1999

УДК 519.682.1+681.142.2

Приводятся основные определения, понятия и алгоритмы теории формальных грамматик и языков, некоторые методы трансляции, а также наборы задач по каждой из рассматриваемых тем. Излагаемые методы трансляции проиллюстрированы на примере модельного языка.

Во втором издании исправлены неточности и ошибки первого издания, расширен набор задач: номера первого издания сохранены, но появились дополнительные пункты, отмеченные малыми латинскими буквами. Все новые или измененные задачи отмечены звездочкой.

Для студентов факультета ВМК в поддержку основного лекционного курса “Системное программное обеспечение” и для преподавателей, ведущих практические занятия по этому курсу.

Авторы выражают благодарность Пильщикову В.Н. за предоставленные материалы по курсу “Системное программное обеспечение”, ценные советы и замечания при подготовке пособия, а также благодарят Баландина К.А. за большую помощь в оформлении работы.

Рецензенты:

проф. Жоголев Е.А.

доц. Корухова Л.С.

Волкова И.А., Руденко Т.В. “Формальные грамматики и языки. Элементы теории трансляции. (учебное пособие для студентов II курса)” — издание второе
(переработанное и дополненное)

Издательский отдел факультета ВМиК МГУ

(лицензия ЛР №040777 от 23.07.96), 1998.-62 с.

Печатается по решению Редакционно-издательского Совета факультета вычислительной математики и кибернетики МГУ им. М.В.Ломоносова

ISBN 5-89407-032-5

O Издательский отдел факультета вычислительной математики и кибернетики МГУ им. М.В.Ломоносова, 1999

ЭЛЕМЕНТЫ ТЕОРИИ ФОРМАЛЬНЫХ ЯЗЫКОВ И ГРАММАТИК

Введение.

В этом разделе изложены некоторые аспекты теории формальных языков, существенные с точки зрения трансляции. Здесь введены базовые понятия и даны определения, связанные с одним из основных механизмов определения языков — грамматиками, приведена наиболее распространенная классификация грамматик (по Хомскому). Особое внимание уделяется контекстно-свободным грамматикам и, в частности, их важному подклассу — регулярным грамматикам. Грамматики этих классов широко используются при трансляции языков программирования. Здесь не приводятся доказательства сформулированных фактов, свойств, теорем, доказательства правильности алгоритмов; их можно найти в книгах, указанных в списке литературы.

Основные понятия и определения

Определение: алфавит — это конечное множество символов.

Предполагается, что термин символ имеет достаточно ясный интуитивный смысл и не нуждается в дальнейшем уточнении.

Определение:цепочкой символов в алфавите V называется любая конечная последовательность символов этого алфавита.

Определение: цепочка, которая не содержит ни одного символа, называется пустой цепочкой. Для ее обозначения будем использовать символ e.

Более формально цепочка символов в алфавите V определяется следующим образом:

(1) e — цепочка в алфавите V;

(2) если a — цепочка в алфавите V и a — символ этого алфавита, то aa — цепочка в алфавите V;

(3) b — цепочка в алфавите V тогда и только тогда, когда она является таковой в силу (1) и (2).

Определение: если a и b — цепочки, то цепочка ab называется конкатенацией (или сцеплением) цепочек a и b.

Например, если a = ab и b = cd, то ab = abcd.

Для любой цепочки a всегда ae = ea = a.

Определение: обращением (или реверсом) цепочки a называется цепочка, символы которой записаны в обратном порядке.

Обращение цепочки a будем обозначать aR.

Например, если a = abcdef, то aR = fedcba.

Для пустой цепочки: e = eR.

Определение:n-ой степенью цепочки a (будем обозначать an) называется конкатенация n цепочек a.

a0 = e; an = aan-1 = an-1a.

Определение: длина цепочки — это число составляющих ее символов.

Например, если a = abcdefg, то длина a равна 7.

Длину цепочки a будем обозначать | a |. Длина e равна 0.

Определение: язык в алфавите V — это подмножество цепочек конечной длины в этом алфавите.

Определение: обозначим через V* множество, содержащее все цепочки в алфавите V, включая пустую цепочку e.

Например, если V={0,1}, то V* = {e, 0, 1, 00, 11, 01, 10, 000, 001, 011, …}.

Определение: обозначим через V+ множество, содержащее все цепочки в алфавите V, исключая пустую цепочку e.

Следовательно, V* = V+ E {e}.

Ясно, что каждый язык в алфавите V является подмножеством множества V*.

Известно несколько различных способов описания языков [3]. Один из них использует порождающие грамматики. Именно этот способ описания языков чаще всего будет использоваться нами в дальнейшем.

Определение: декартовым произведением A ´ B множеств A и B называется множество { (a,b) | a I A, b I B}.

Определение: порождающая грамматика G — это четверка (VT, VN, P, S), где

VT — алфавит терминальных символов ( терминалов ),

VN — алфавит нетерминальных символов (нетерминалов), не пересекаю-
щийся с VT,

P — конечное подмножество множества (VT E VN)+ ´ (VT E VN)*; элемент (a, b) множества P называется правилом вывода и записывается в виде a ® b,

S — начальный символ (цель) грамматики, S I VN.

Для записи правил вывода с одинаковыми левыми частями

a ® b1 a ® b2 … a ® bn

будем пользоваться сокращенной записью

a ® b1 | b2 |…| bn.

Каждое bi , i = 1, 2, … ,n , будем называть альтернативой правила вывода из цепочки a.

Пример грамматики: G1 = ({0,1}, {A,S}, P, S), где P состоит из правил

S ® 0A1

0A ® 00A1

A ® e

Определение: цепочка b I (VT E VN)* непосредственно выводима из цепочки a I (VT E VN)+ в грамматике G = (VT, VN, P, S) (обозначим a ® b), если a = x1gx2, b = x1dx2, где x1, x2, d I (VT E VN)*, g I (VT E VN)+ и правило вывода
g ® d содержится в P.

Например, цепочка 00A11 непосредственно выводима из 0A1 в грамматике G1.

Определение: цепочка b I (VT E VN)* выводима из цепочки
a I (VT E VN)+ в грамматике G = (VT, VN, P, S) (обозначим a ? b), если существуют цепочки g0, g1, … , gn (n=0), такие, что a = g0 ® g1 ® … ® gn= b.

Определение: последовательность g0, g1, … , gn называется выводом длины n.

Например, S ? 000A111 в грамматике G1 (см. пример выше), т.к. существует вывод S ® 0A1 ® 00A11 ® 000A111. Длина вывода равна 3.

Определение: языком, порождаемым грамматикой G = (VT, VN, P, S), называется множество L(G) = {a I VT* | S ? a}.

Другими словами, L(G) — это все цепочки в алфавите VT, которые выводимы из S с помощью P.

Например, L(G1) = {0n1n | n0}.

Определение: цепочка a I (VT E VN)*, для которой S ? a, называется сентенциальной формой в грамматике G = (VT, VN, P, S).

Таким образом, язык, порождаемый грамматикой, можно определить как множество терминальных сентенциальных форм.

Определение: грамматики G1 и G2 называются эквивалентными, если
L(G1) = L(G2).

Например,

G1 = ({0,1}, {A,S}, P1, S) и G2 = ({0,1}, {S}, P2, S)

P1: S ® 0A1 P2: S ® 0S1 | 01

0A ® 00A1

A ® e

эквивалентны, т.к. обе порождают язык L(G1) = L(G2) = {0n1n | n0}.

Определение: грамматики G1 и G2 почти эквивалентны, если
L(G1) E {e} = L(G2) E {e}.

Другими словами, грамматики почти эквивалентны, если языки, ими порождаемые, отличаются не более, чем на e.

Например,

G1 = ({0,1}, {A,S}, P1, S) и G2 = ({0,1}, {S}, P2, S)

P1: S ® 0A1 P2: S ® 0S1 | e

0A ® 00A1

A ® e

почти эквивалентны, т.к. L(G1)={0n1n | n0}, а L(G2)={0n1n | n=0}, т.е. L(G2) состоит из всех цепочек языка L(G1) и пустой цепочки, которая в L(G1) не входит.

Классификация грамматик и языков по Хомскому

(грамматики классифицируются по виду их правил вывода)

ТИП 0:

Грамматика G = (VT, VN, P, S) называется грамматикой типа 0, если на правила вывода не накладывается никаких ограничений (кроме тех, которые указаны в определении грамматики).

ТИП 1:

Грамматика G = (VT, VN, P, S) называется неукорачивающей грамматикой, если каждое правило из P имеет вид a ® b, где a I (VT E VN)+, b I (VT E VN)+ и
| a |

Грамматика G = (VT, VN, P, S) называется контекстно-зависимой ( КЗ ), если каждое правило из P имеет вид a ® b, где a = x1Ax2; b = x1gx2; A I VN;
g I (VT E VN)+; x1,x2 I (VT E VN)*.

Грамматику типа 1 можно определить как неукорачивающую либо как контекстно-зависимую.

Выбор определения не влияет на множество языков, порождаемых грамматиками этого класса, поскольку доказано, что множество языков, порождаемых неукорачивающими грамматиками, совпадает с множеством языков, порождаемых КЗ-грамматиками.

ТИП 2:

Грамматика G = (VT, VN, P, S) называется контекстно-свободной ( КС ), если каждое правило из Р имеет вид A ® b, где A I VN, b I (VT E VN)+.

Грамматика G = (VT, VN, P, S) называется укорачивающей контекстно-свободной ( УКС ), если каждое правило из Р имеет вид A ® b, где A I VN,
b I (VT E VN)*.

Грамматику типа 2 можно определить как контекстно-свободную либо как укорачивающую контекстно-свободную.

Возможность выбора обусловлена тем, что для каждой УКС-грамматики существует почти эквивалентная КС-грамматика.

ТИП 3:

Грамматика G = (VT, VN, P, S) называется праволинейной, если каждое правило из Р имеет вид A ® tB либо A ® t, где A I VN, B I VN, t I VT.

Грамматика G = (VT, VN, P, S) называется леволинейной, если каждое правило из Р имеет вид A ® Bt либо A ® t, где A I VN, B I VN, t I VT.

Грамматику типа 3 (регулярную, Р-грамматику) можно определить как праволинейную либо как леволинейную.

Выбор определения не влияет на множество языков, порождаемых грамматиками этого класса, поскольку доказано, что множество языков, порождаемых праволинейными грамматиками, совпадает с множеством языков, порождаемых леволинейными грамматиками.

Соотношения между типами грамматик:

(1) любая регулярная грамматика является КС-грамматикой;

(2) любая регулярная грамматика является УКС-грамматикой;

(3) любая КС-грамматика является КЗ-грамматикой;

(4) любая КС-грамматика является неукорачивающей грамматикой;

(5) любая КЗ-грамматика является грамматикой типа 0.

(6) любая неукорачивающая грамматика является грамматикой типа 0.

Замечание: УКС-грамматика, содержащая правила вида A ® e, не является КЗ-грамматикой и не является неукорачивающей грамматикой.

Определение: язык L(G) является языком типа k, если его можно описать грамматикой типа k.

Соотношения между типами языков:

(1) каждый регулярный язык является КС-языком, но существуют КС-языки, которые не являются регулярными ( например, L = {anbn | n0}).

(2) каждый КС-язык является КЗ-языком, но существуют КЗ-языки, которые не являются КС-языками ( например, L = {anbncn | n0}).

(3) каждый КЗ-язык является языком типа 0.

Замечание: УКС-язык, содержащий пустую цепочку, не является КЗ-языком.

Замечание: следует подчеркнуть, что если язык задан грамматикой типа k, то это не значит, что не существует грамматики типа k’ (k’k), описывающей тот же язык. Поэтому, когда говорят о языке типа k, обычно имеют в виду максимально возможный номер k.

Например, КЗ-грамматика G1 = ({0,1}, {A,S}, P1, S) и

КС-грамматика G2 = ({0,1}, {S}, P2, S), где

P1: S ® 0A1 P2: S ® 0S1 | 01

0A ® 00A1

A ® e

описывают один и тот же язык L = L(G1) = L(G2) = { 0n1n | n0}. Язык L называют КС-языком, т.к. существует КС-грамматика, его описывающая. Но он не является регулярным языком, т.к. не существует регулярной грамматики, описывающей этот язык [3].

Статьи к прочтению:

Лекция 8: Формальные грамматики


Похожие статьи: