Уровневые протоколы и модель взаимодействия открытых систем 3 страница

      Комментарии к записи Уровневые протоколы и модель взаимодействия открытых систем 3 страница отключены

2. Разделение каналов. Каналы связи в ЛКС используются, как правило, совместно несколькими узлами сети, а в ГКС — индивидуально.

3. Использование метода коммутации пакетов. Для ЛКС характерно неравномерное распределение нагрузки, т.е. наличие пульсирующего трафика. В связи с этим очень эффективной оказывается коммутация пакетов, обеспечивающая большую пропускную способность сети. В ГКС наряду с коммутацией пакетов используются и другие методы коммутации, а также некоммутируемые каналы.

4. Масштабируемось ЛКС отличаются плохой масштабируемостью из-за жесткости базовых топологий, определяющих способ подключения РС и длину линий связи. ГКС рассчитаны на работу с произвольными топологиями, поэтому для них характерна хорошая масштабируемость.

5. Сложность оборудования и методов передачи данных. В ЛКС наличие качественных линий связи позволило упростить процедуры передачи данных (применяются немодулированные информационные сигналы, отсутствует обязательное подтверждение получения пакета) и соответствующее оборудование. В ГКС из-за низкой надежности физических каналов эти процедуры значительно сложнее: широко применяются модуляция, асинхронные методы передачи данных, сложные методы контроля достоверности передачи данных и обеспечения их безопасности и т.д.

6. Скорость обмена данными. В ЛКС, где используются высокоскоростные каналы (10, 16, 100 и более Мбит/с), она неизмеримо больше, чем в ГКС, где скорости, передачи данных 2400, 9600, 28800, 33600 бит/с, 56 и 64 Кбит/с и только на магистральных каналах — до 2 Мбит/с.

7. Оперативность удовлетворения запросов пользователей. Для ЛКС обычным является режим on-line, поэтому время доставки пакета (кадра) адресату составляет несколько миллисекунд. В ГКС, где скорость передачи данных сравнительно низкая, это время исчисляется несколькими секундами, реализация служб для режима on-line затруднена, зато широко используется режим off-line (дейтаграммный режим доставки пакетов).

8. Перечень услуг пользователям. В ЛКС этот перечень существенно шире, чем в ГКС, где, в основном, предоставляются почтовые услуги и передача файлов.

Заметим что указанные особенности ЛКС и их отличия от глобальных сетей характерны для сетей конца 80-х и начала 90-х годов ХХ века. В последние годы наметилась устойчивая тенденция сближения ЛКС и ГКС, которая привела к значительному взаимопроникновению их технологий. Одним из проявлений этой тенденции является появление корпоративных и городских сетей, занимающих промежуточное положение между локальными и глобальными сетями. В таких сетях даже при больших расстояниях между узлами прокладываются качественные линии связи, обеспечивающие высокие скорости передачи данных. Используются оптоволоконные линии связи, упрощаются процедуры обеспечения корректности передачи информации, как это имеет место в сети Frame Relay. Режим работы on-line стал обычным и в ГКС, например в гипертекстовой информационной службе WWW (World Wide Web), интерактивные возможности которой перенесены в ЛКС.

Процесс переноса служб и технологий из глобальных сетей в локальные и корпоративные сети приобрел практически массовый характер. В связи с этим появился даже специальный термин — Intranet-технологии (Intra — внутренний), обозначающий применение служб внешних (глобальных) сетей во внутренних (локальных, корпоративных).

В ЛКС стали обращать такое же особое внимание на обеспечение безопасности информации, как и в глобальных, т.е. используются те же методы защиты информации от несанкционированного доступа.

Появляются новые технологии, предназначенные для использования в ГКС и ЛКС. Это прежде всего технология АТМ, объединяющая все существующие виды трафика в одной транспортной сети.

1.5. Протоколы локальных сетей

В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня — Ethernet — рассчитан на топологию общая шина, когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring — на топологию звезда. При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени (в режиме TDH). Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХX века, наряду с положительными имели и отрицательные последствия, главные из которых — ограничения по производительности и надежности.

Поскольку в ЛКС с простейшей топологией (общая шина, кольцо, звезда) имеется только один путь передачи информации, производительность сети ограничивается пропускной способностью этого пути, а надежность сети — надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специальных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС (шина, кольцо) превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.

Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring. Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети — с помощью других протоколов.

В развитии локальных сетей, кроме отмеченного, наметились и другие тенденции:

— отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;

— появление нового режима работы в ЛКС при использовании коммутаторов — полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т.к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах.

Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802.Х охватывают только два нижних уровня модели ВОС — физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.

В локальных сетях, как уже отмечалось, канальный уровень разделен на два подуровня:

— логической передачи данных (LLC);

— управления доступом к среде (МАС).

Протоколы подуровней МАС и LLC взаимно независимы, т.е. каждый протокол подуровня МАС может работать с любым протоколом подуровня LLC, и наоборот.

Подуровень МАС обеспечивает совместное использование общей передающей среды, а подуровень LLC — организует передачу кадров с различным уровнем качества транспортных услуг. В современных ЛКС используются несколько протоколов подуровня МАС, реализующих различные алгоритмы доступа к разделяемой среде и определяющих специфику технологий Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Протокол LLC. Для технологий ЛКС этот протокол обеспечивает необходимое качество транспортной службы. Он занимает положение между сетевыми протоколами и протоколами подуровня МАС. По протоколу LLC кадры передаются либо дейтаграммным способом, либо с помощью процедур с установлением соединения между взаимодействующими станциями сети и восстановлением кадров путем их повторной передачи при наличии в них искажений.

Различают три режима работы протокола LLC:

— LLC1 — процедура без установления соединения и без подтверждения. Это дейтаграммный режим работы. Он обычно используется тогда, когда восстановление данных после ошибок и упорядочение данных осуществляется протоколами вышележащих уровней;

— LLC2 — процедура с установлением соединения и подтверждением. По этому протоколу перед началом передачи между взаимодействующими РС устанавливается логическое соединение и, если это необходимо, выполняются процедуры восстановления кадров после ошибок и упорядочения потока кадров в рамках установленного соединения (протокол работает в режиме скользящего окна, используемом в сетях ARQ). Логический канал протокола LLC2 является дуплексным, т.е. данные могут передаваться одновременно в обоих направлениях;

— LLC3 — процедура без установления соединения, но с подтверждением. Это дополнительный протокол, который применяется, когда временные задержки (например, связанные с установлением соединения) перед отправкой данных не допускаются, но подтверждение о корректности приема данных необходимо. Протокол LLC3 используется в сетях, работающих в режиме реального времени по управлению промышленными объектами.

Указанные три протокола являются общими для всех методов доступа к передающей среде, определенных стандартами IEEE 802.Х.

Кадры подуровня LLC по своему назначению делятся на три типа — информационные (для передачи данных), управляющие (для передачи команд и ответов в процедурах LLC2) и ненумерованные (для передачи ненумерованных команд и ответов LLC1 и LLC2).

Все кадры имеют один и тот же формат: адрес отправителя, адрес получателя, контрольное поле (где размещается информация, необходимая для контроля правильности передачи данных), поле данных и два обрамляющих однобайтовых поля Флаг для определения границ кадра LLC. Поле данных может отсутствовать в управляющих и ненумерованных кадрах. В информационных кадрах, кроме того, имеется поле для указания номера отправленного кадра, а также поле для указания номера кадра, который отправляется следующим.

1.6. Технология Ethernet (стандарт 802.3)

Это самый распространенный стандарт локальных сетей. По этому протоколу в настоящее время работают более 5 миллионов ЛКС. Существует несколько вариантов и модификаций технологии Ethernet, составляющих целое семейство технологий. Из них наиболее известными являются 10-мегабитный вариант стандарта IEEE 802.3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet. Все эти варианты и модификации отличаются типом физической среды передачи данных.

Все виды стандартов Ethernet используют один и тот же метод доступа к передающей среде — метод случайного доступа CSMA/CD. Он применяется исключительно в сетях с общей логической шиной, которая работает в режиме коллективного доступа и используется для передачи данных между любыми двумя узлами сети. Метод CSMA/CD описан в п. 8.3 этой книги. Такой метод доступа носит вероятностный характер: вероятность получения в свое распоряжение среды передачи зависит от загруженности сети. При значительной загрузке сети интенсивность коллизий возрастает и ее полезная пропускная способность резко падает.

Полезная пропускная способность сети — это скорость передачи пользовательских данных, переносимых полем данных кадров. Она всегда меньше номинальной битовой скорости протокола Ethernet за счет служебной информации кадра, межкадровых интервалов и ожидания доступа к среде. При передаче кадров минимальной длины (72 байта вместе с преамбулой) максимально возможная пропускная способность сегмента Ethernet составляет 14880 кадр/с, а полезная пропускная способность — всего 5,48 Мбит/с, что немного превышает половину номинальной пропускной способности — 10 Мбит/с. При передаче кадров максимальной длины (1518 байт) полезная пропускная способность равна 9,76 Мбит/с, что близко к номинальной скорости протокола. Наконец, при использовании кадров средней длины с полем данных в 512 байт, полезная пропускная способность равна 9,29 Мбит/с, т.е. также мало отличается от предельной пропускной способности в 10 Мбит/с. Следует учесть, что такие скорости достигаются только при отсутствии коллизий, когда двум взаимодействующим узлам другие узлы не мешают. Коэффициент использования сети в случае отсутствия коллизий и ожидания доступа имеет максимальное значение 0,96.

Технологией Ethernet поддерживаются 4 разных типа кадров, имеющих общий формат адресов. Распознавание типа кадров осуществляется автоматически. В качестве примера приведем структуру кадра 802.3/LLC.

Такой кадр имеет следующие поля:

— поле преамбулы — состоит из семи синхронизирующих байт 10101010, которые используются для реализации манчестерского кодирования;

— начальный ограничитель кадра — состоит из одного байта 10101011 и указывает на то, что следующий байт — это первый байт заголовка кадра;

— адрес назначения — длина его 6 байт, он включает признаки, по которым устанавливает тип адреса — индивидуальный (кадр отправляется одной РС), групповой (кадр отправляется группе РС), широковещательный (для всех РС сети);

— адрес источника (отправителя) — длина его 2 или 6 байт;

— длина поля данных — 2-байтовое поле, определяющее длину поля данных в кадре;

— поле данных — длина его от 0 до 1500 байт. Если длина этого поля меньше 46 байт, то используется так называемое поле заполнения, чтобы дополнить кадр до минимального допустимого значения в 46 байт;

— поле заполнения — длина его такая, чтобы обеспечить минимальную длину поля данных в 46 байт (это необходимо для корректной работы механизма обнаружения ошибок). Поле заполнения в кадре отсутствует, если длина поля данных достаточна;

— поле контрольной суммы — состоит из 4 байт и содержит контрольную сумму, которая используется на приемной стороне для выявления ошибок в принятом кадре.

В зависимости от типа физической среды по стандарту IEEE 802.3 различают следующие спецификации:

— 10 Base-5 — толстый коаксиальный кабель (диаметр 0,5 дюйма), максимальная длина сегмента сети 500 метров;

— 10 Base-2 — тонкий коаксиальный кабель (диаметр 0,25 дюйма), максимальная длина сегмента без повторителей 185 метров;

— 10 Base-T — неэкранированная витая пара, образующая звездообразную топологию на основе концентратора. Расстояние между концентратором и РС — не более 100 метров;

— 10 Base-F — волоконно-оптический кабель, образующий звездообразную топологию. Расстояние между концентратором и РС — до 1000 м и 2000 м для различных вариантов этой спецификации.

В этих спецификациях число 10 обозначает битовую скорость передачи данных (10 Мбит/с), слово Base — метод передачи на одной базовой частоте 10 МГц, последний символ (5, 2, Т, F) — тип кабеля.

Для всех стандартов Ethernet имеют место следующие характеристики и ограничения:

— номинальная пропускная способность — 10 Мбит/с;

— максимальное число РС в сети — 1024;

— максимальное расстояние между узлами в сети — 2500 м;

— максимальное число коаксиальных сегментов сети — 5;

— максимальная длина сегмента — от 100 м (для 10Base-T) до 2000 м (для 10Base-F);

— максимальное число повторителей между любыми станциями

сети — 4.

1.7. Технология Token Ring (стандарт 802.5)

Здесь используется разделяемая среда передачи данных, состоящая из отрезков кабеля, соединяющих все РС сети в кольцо. К кольцу (общему разделяемому ресурсу) применяется детерминированный доступ, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью маркера. Маркерный метод доступа гарантирует каждой РС получение доступа к кольцу в течение времени оборота маркера. Используется приоритетная система владения маркером — от 0 (низший приоритет) до 7 (высший). Приоритет для текущего кадра определяется самой станцией, которая может захватить кольцо, если в нем нет более приоритетных кадров.

В сетях Token Ring в качестве физической среды передачи данных используются экранированная и неэкранированная витая пара и волоконно-оптический кабель. Сети работают с двумя битовыми скоростями — 4 и 16 Мбит/с, причем в одном кольце все РС должны работать с одной скоростью. Максимальная длина кольца — 4 км, а максимальное количество РС в кольце — 260. Ограничения на максимальную длину кольца связаны со временем оборота маркера по кольцу. Если в кольце 260 станций и время удержания маркера каждой станцией равно 10 мс, то маркер после совершения полного оборота вернется в активный монитор через 2,6 с. При передаче длинного сообщения, разбиваемого, например, на 50 кадров, это сообщение будет принято получателем в лучшем случае (когда активной является только

РС-отправитель) через 260 с, что для пользователей не всегда приемлемо.

Максимальный размер кадра в стандарте 802.5 не определен. Обычно он принимается равным 4 Кбайт для сетей 4 Мбит/с и 16 Кбайт для сетей 16 Мбит/с.

В сетях 16 Мбит/с используется также и более эффективный алгоритм доступа к кольцу. Это алгоритм раннего освобождения маркера (ETR): станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита своего кадра, не дожидаясь возвращения по кольцу этого кадра и занятого маркера. В этом случае по кольцу будут передаваться одновременно кадры нескольких станций, что существенно повышает эффективность использования пропускной способности кольца. Конечно и в этом случае в каждый данный момент генерировать кадр в кольцо может только та РС, которая в этот момент владеет маркером доступа, а остальные станции будут только ретранслировать чужие кадры.

Технология Token Ring намного сложнее технологии Ethernet. В ней заложены возможности отказоустойчивости: за счет обратной связи кольца одна из станций (активный монитор) непрерывно контролирует наличие маркера, время оборота маркера и кадров данных, обнаруженные ошибки в сети устраняются автоматически, например, потерянный маркер может быть восстановлен. В случае выхода из строя активного монитора, выбирается новый активный монитор, и процедура инициализации кольца повторяется.

Стандарт Token Ring (технология этих сетей была разработана еще в 1984 г. фирмой IBM, которая является законодателем мод этой технологии) изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU, т.е. устройствами многостанционного доступа (рис. 10.1). Концентратор может быть пассивным (соединяет порты внутренними связями так, чтобы РС, подключенные к этим портам, образовали кольцо, а также обеспечивает обход какого-либо порта, если подключенный к этому порту компьютер выключается) или активным (выполняет функции регенерации сигналов и поэтому иногда называется повторителем).

Для сетей Token Ring характерна звездно-кольцевая топология: РС подключаются к концентраторам по топологии звезды, а сами концентраторы через специальные порты Ring In (RI) и Ring Out (RO) объединяются для образования магистрального физического кольца. Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующие кадры адресату (каждый кадр снабжается полем с маршрутом прохождения колец).

Недавно технология Token Ring стараниями компании IBM получила новое развитие: предложен новый вариант этой технологии (HSTR), поддерживающий битовые скорости в 100 и 155 Мбит/с. При этом сохранены основные особенности технологии Token Ring 16 Мбит/с.

1.8. Технология FDDI

Это первая технология ЛКС, в которой для передачи данных используется волоконно-оптический кабель. Она появилась в 1988 г. и ее официальное название — оптоволоконный интерфейс распределенных данных (Fiber Distributed Data Interface, FDDI). В настоящее время в качестве физической среды, кроме волоконно-оптического кабеля, применяется неэкранированная витая пара.

Технология FDDI предназначена для использования на магистральных соединениях между сетями, для подключения к сети высокопроизводительных серверов, в корпоративных и городских сетях. Поэтому в ней обеспечена высокая скорость передачи данных (100 Мбит/с), отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все это сказалось на стоимости подключения к сети: для подключения клиентских компьютеров эта технология оказалась слишком дорогой.

Существует значительная преемственность между технологиями Token Ring и FDDI. Основные идеи технологии Token Ring восприняты и стали совершенствоваться и развиваться в технологии FDDI, в частности, кольцевая топология и маркерный метод доступа.

В сети FDDI для передачи данных используются два оптоволоконных кольца, образующих основной и резервный пути передачи между РС. Станции сети подключаются к обоим кольцам. В нормальном режиме задействовано только основное кольцо. В случае отказа какой-либо части основного кольца оно объединяется с резервным кольцом, вновь образуя единое кольцо (это режим свертывания колец) с помощью концентраторов и сетевых адаптеров. Наличие процедуры свертывания при отказах — основной способ повышения отказоустойчивости сети. Существуют и другие процедуры для определения отказов в сети и восстановления ее работоспособности.

Основное отличие маркерного метода доступа к передающей среде, используемого в сети FDDI, от этого метода в сети Token Ring, заключается в том, что в сети FDDI время удержания маркера является постоянной величиной только для синхронного трафика, который критичен к задержкам передачи кадров. Для асинхронного трафика, не критичного к небольшим задержкам передачи кадров, это время зависит от загрузки кольца: при небольшой загрузке оно увеличивается, а при большой — может уменьшаться до нуля. Таким образом, для асинхронного трафика метод доступа является адаптивным, хорошо регулирующим временные перегрузки сети. Механизм приоритетов кадров отсутствует. Считается, что достаточно разделить трафик на два класса — синхронный, который обслуживается всегда (даже при перегрузках кольца), и асинхронный, обслуживаемый при малой загрузке кольца. Станции FDDI применяют алгоритм раннего освобождения маркера, как это сделано в сети Token Ring со скоростью 16 Мбит/с. Синхронизация сигналов обеспечивается применением биполярного кода NRZI.

В сети FDDI выделенный активный монитор отсутствует, все станции и концентраторы равноправны, и при обнаружении отклонений от нормы они осуществляют повторную инициализацию сети и, если это необходимо, ее реконфигурацию.

Результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring приведены в рис. 1.

1.9. Технологии Fast Ethernet и 100VG-Any LAN

Обе эти технологии не являются самостоятельными стандартами и рассматриваются как развитие и дополнение технологии Ethernet, реализованное соответственно в 1995 и 1998 гг.. Новые технологии Fast Ethernet (стандарт 802.3и) и 100VG-Any LAN (стандарт 802.3z) имеют производительность 100 Мбит/с и отличаются степенью преемственности с классическим Ethernet.

В стандарте 802.3и сохранен метод случайного доступа CSMA/CD, и тем самым обеспечена преемственность и согласованность сетей 10 Мбит/с и 100 Мбит/с.

В технологии 100VG-Any LAN используется совершенно новый метод доступа — Demand Priority (DP), приоритетный доступ по требованию. Эта технология существенно отличается от технологии Ethernet.

Таблица1.

Отметим особенности технологии Fast Ethernet и ее отличия от технологии Ethernet:

— структура физического уровня технологии Fast Ethernet более сложная, что объясняется использованием трех вариантов кабельных систем: волоконно-оптический кабель, витая пара категории 5 (используются две пары), витая пара категории 3 (используются четыре пары). Отказ от коаксиального кабеля привел к тому, что сети этой технологии всегда имеют иерархическую древовидную структуру;

— диаметр сети сокращен до 200 м, время передачи кадра минимальной длины уменьшено в 10 раз за счет увеличения скорости передачи в 10 раз;

— технология Fast Ethernet может использоваться при создании магистралей локальных сетей большой протяженности, но только в полудуплексном варианте и совместно с коммутаторами (полудуплексный вариант работы для этой технологии является основным);

— для всех трех спецификаций физического уровня, отличающихся типом используемого кабеля, форматы кадров отличаются от форматов кадров технологий 10-мегабитного Ethernet;

— признаком свободного состояния передающей среды является не отсутствие сигналов, а передача по ней специального символа в кодированном виде;

— для представления данных при передаче по кабелю и обеспечения синхронизации сигналов манчестерский код не используется. Применяется метод кодирования 4В/5В, хорошо себя зарекомендовавший в технологии FDDI. В соответствии с этим методом каждые 4 бита передаваемых данных представляются 5 битами, т.е. из 32 комбинаций 5-битных символов для кодирования исходных 4-битных символов используются только 16 комбинаций, а из оставшихся 16 комбинаций выбираются несколько кодов, которые используются как служебные. Один из служебных кодов постоянно передается в течение пауз между передачей кадров. Если в линии связи он отсутствует, то это свидетельствует об отказе физической связи;

— кодирование и синхронизация сигналов осуществляются с помощью биполярного кода NRZI;

— технология Fast Ethernet рассчитана на использование концентраторов-повторителей для образования связей в сети (то же самое имеет место для всех некоаксиальных вариантов Ethernet).

Особенности технологии 10VG-Any LAN заключаются в следующем:

— используется другой метод доступа к передающей среде — Demand Priority, обеспечивающий более эффективное распределение пропускной способности сети между запросами пользователей и поддерживающий приоритетный доступ для синхронного режима работы. В качестве арбитра доступа используется концентратор, который циклически выполняет опрос рабочих станций. Станция, желая передать свой кадр, посылает специальный сигнал концентратору, запрашивает передачу кадра и указывает его приоритет. Имеются два уровня приоритетов — низкий (для обычных данных) и высокий (для данных, чувствительных к временным задержкам, например, мультимедиа). Приоритеты запросов имеют две составляющие — статическую, и динамическую, поэтому станция с низким уровнем приоритета, долго не имеющая доступа к сети, получает высокий приоритет;

— передача кадров осуществляется только станции назначения, а не всем станциям сети;

— сохранены форматы кадров Ethernet и Token Ring, что облегчает межсетевое взаимодействие через мосты и маршрутизаторы;

— поддерживаются несколько спецификаций физического уровня, предусматривающих использование четырех и двух неэкранированных витых пар, двух экранированных витых пар и двух оптоволоконных кабелей. Если используются 4 пары неэкранированного кабеля, по каждой паре одновременно передаются данные со скоростью 25 Мбит/с, что в сумме дает 100 Мбит/с. Коллизии при передаче информации отсутствуют. Для кодирования данных применяется код 5В/6В, идея использования которого аналогична коду 4В/5В.

Технология 100VG-Any LAN не получила такого широкого распространения, как Fast Ethernet. Это объясняется узостью технических возможностей поддержки разных типов трафика, а также появлением высокоскоростной технологии Gigabit Ethernet.

1.10. Технология Gigabit Ethernet

Появление этой технологии — новая ступень в иерархии сетей семейства Ethernet, обеспечивающая скорость передачи в 1000 Мбит/с. Стандарт по этой технологии принят в 1998 г., в нем максимально сохранены идеи классической технологии Ethernet.

По поводу технологии Gigabit Ethernet следует отметить следующее:

— на уровне протокола не поддерживаются (так же, как и у его предшественников): качество обслуживания, избыточные связи, тестирование работоспособности узлов и оборудования. Что касается качества обслуживания, то считается, что высокая скорость передачи данных по магистрали и возможность назначения пакетам приоритетов в коммутаторах вполне достаточны для обеспечения качества транспортного обслуживания пользователей сети. Поддержка избыточных связей и тестирование оборудования осуществляются протоколами более высоких уровней;

— сохраняются все форматы кадров Ethernet;

— есть возможность работы в полудуплексном и полнодуплексном режимах. Первый из них поддерживает метод доступа CSMA/CD, а второй — работу с коммутаторами;

— поддерживаются все основные виды кабелей, как и в предшествующих технологиях этого семейства: волоконно-оптический, витая пара, коаксиал;

— минимальный размер кадра увеличен с 64 до 512 байт, максимальный диаметр сети тот же — 200 м. Можно передавать несколько кадров подряд, не освобождая среду.

Технология Gigabit Ethernet позволяет строить крупные локальные сети, в которых серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль 1000 Мбит/с объединяет их, обеспечивая запас пропускной способности.

1.11. Протоколы верхнего уровня ЛКС

До сих пор рассматривались протоколы, работающие на первых трех уровнях семиуровневой эталонной модели ВОС и реализующие соответствующие методы логической передачи данных и доступа к передающей среде. В соответствии с этими протоколами передаются пакеты между рабочими станциями, но не решаются вопросы, связанные с сетевыми файловыми системами и переадресацией файлов. Эти протоколы не включают никаких средств обеспечения правильной последовательности приема переданных данных и средств идентификации прикладных программ, нуждающихся в обмене данными.

В отличие от протоколов нижнего уровня, протоколы верхнего уровня (называемые также протоколами среднего уровня, так как они реализуются на 4-м и 5-м уровнях модели ВОС) служат для обмена данными. Они предоставляют программам интерфейс для передачи данных методом дейтаграмм, когда пакеты адресуются и передаются без подтверждения получения, и методом сеансов связи, когда устанавливается логическая связь между взаимодействующими станциями (источником и адресатом) и доставка сообщений подтверждается.

Статьи к прочтению:

Взаимодействие с другими людьми. Александр Палиенко.


Похожие статьи: