Глава 2. технические средства информатики

      Комментарии к записи Глава 2. технические средства информатики отключены

Классификация ЭВМ

Компьютеры могут быть классифицированы по ряду признаков, в частности: по принципу действия, назначению, способам организации вычислительного процесса, размерам и вычислительной мощности, функциональным возможностям, способности к параллельному выполнению программ и др.

По назначению ЭВМ можно разделить на три группы:

— универсальные (общего назначения) — предназначены для решения самых разных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Характерными чертами этих ЭВМ являются высокая производительность, разнообразие форм обрабатываемых данных (двоичных, десятичных, символьных), разнообразие выполняемых операций (арифметических, логических, специальных), большая емкость оперативной памяти, развитая организация ввода-вывода информации;

— проблемно-ориентированные — предназначены для решения более узкого круга задач, связанных обычно с технологическими объектами, регистрацией, накоплением и обработкой небольших объемов данных (управляющие вычислительные комплексы);

— специализированные — для решения узкого круга задач, чтобы снизить сложность и стоимость этих ЭВМ, сохраняя высокую производительность и надежность работы (программируемые микропроцессоры специального назначения, контроллеры, выполняющие функции управления техническими устройствами).

По принципу действия (критерием деления вычислительных машин является форма представления информации, с которой они работают):

— аналоговые вычислительные машины (АВМ) — вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной форме, т.е. виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения); в этом случае величина напряжения является аналогом значения некоторой измеряемой переменной. Например, ввод числа 19.42 при масштабе 0.1 эквивалентен подаче на вход напряжения в 1.942 В; АВМ просты и удобны в эксплуатации; программирование задач для решения на них нетрудоемкое, скорость решения изменяется по желанию оператора (больше, чем у ЦВМ), но точность решения очень низкая (относительная погрешность 2-5 %). На АВМ решают математические задачи, содержащие дифференциальные уравнения, не содержащие сложной логики;

— цифровые вычислительные машины (ЦВМ) — вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее в цифровой, форме — в виде нескольких различных напряжений, эквивалентных числу единиц в представляемом значении переменной; ЦВМ получили наиболее широкое распространение, именно их подразумевают, когда говорят про ЭВМ;

— гибридные вычислительные машины (ГВМ) — вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; ГВМ целесообразно использовать для управления сложными быстродействующими техническими комплексами.

По поколениям ЭВМ можно классифицировать так:

Поколение Годы Элементная база Быстродействие Память Примеры
1940 -1955 электронные вакуумные лампы десятки тысяч операций в секунду 2 — 8 Кб ENIAC (США), Mark I (Великобритания), МЭСМ (Киев)
1955 — 1964 транзисторы сотни тысяч операций в секунду 100 Кб NEC — 1101 (Япония), IBM — 709 (США), Минск, БЭСМ (СССР)
1964 – 1977 полупроводниковые интегральные схемы (сотни – тысячи транзисторов в одном корпусе) сотни миллионов операций в секунду до десятков Мб IBM System 360 (США), ЭВМ ЕС и СМ (СЭВ)
1977 – 1991 большие и сверхбольшие интегральные схемы- микропроцессоры (десятки тысяч- миллионы транзисторов в одном кристалле) более миллиарда операций в секунду десятки Гб IBM PC AT/XT (США), Macintosh (Apple, США), ДВК “Искра” (СССР), MSX Yamaha (Япония), Pentium (США)
1991 – 1995 сверхсложные микропроцессоры с параллельно-векторной структурой сотни миллиардов операций в секунду ЭВМ со многими десятками параллельно работающих процессоров, позволяющих строить эффективные системы обработки знаний;
с 1995 сеть большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем Оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой — с сетью из большого числа (десятки тысяч) несложных микропроцессоров, моделирующих структуру нейронных биологических систем.

Классификация ЭВМ по размерам и функциональным возможностям:

Большие ЭВМ

Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверх высокой степенью интеграции. Однако их производительность оказалась недостаточной для моделирования экологических систем, задач генной инженерии, управления сложными оборонными комплексами и др. Большие ЭВМ часто называют за рубежом MAINFRAME и слухи об их смерти сильно преувеличены.

Как правило, они имеют производительность не менее 10 MIPS (миллионов операций с плавающей точкой в секунду); основную память от 64 до 10000 МВ; внешнюю память не менее 50 ГВ; многопользовательский режим работы.

Основные направления использования — это решение научно-технических задач, работа с большими БД, управление вычислительными сетями и их ресурсами в качестве серверов. Примеры: семейство mainframe: IBM ES/9000 (Enterprise System), включает более 18 моделей, реализованных на основе архитектуры IBM390.

Малые ЭВМ

Малые (мини) ЭВМ — надежные, недорогие и удобные в эксплуатации, обладают несколько более низкими, по сравнению с большими ЭВМ возможностями. Супер-мини ЭВМ имеют емкость основной памяти — 4-512 МВ; ёмкость дисковой памяти — 2-100 ГВ; число поддерживаемых пользователей — 16-512.

Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов, в системах несложного моделирования, в АСУП, для управления технологическими процессами. Родоначальник современных мини-ЭВМ — PDP-11,(programm driven processor -программно-управляемый процессор) фирмы DEC (США).

Супер ЭВМ

Это мощные многопроцессорные ЭВМ с быстродействием сотни миллионов — десятки миллиардов операций в секунду. Достичь такую производительность на одном микропроцессоре по современным технологиям невозможно, в виду конечного значения скорости распространения электромагнитных волн (300000 км/сек), ибо время распространения сигнала на расстояние в несколько миллиметров (размер стороны МП) становится соизмеримым с временем выполнения одной операции. Поэтому суперЭВМ создают в виде высокопараллельных многопроцессорных вычислительных систем. В настоящее время в мире насчитывается несколько тысяч суперЭВМ, начиная от простеньких офисных Cray EL до мощных Cray 3, SX-X фирмы NEC, VP2000 фирмы Fujitsu (Япония), VPP 500 фирмы Siemens (Германия).

Микро ЭВМ или персональный компьютер

ПК должен иметь характеристики, удовлетворяющие требованиям общедоступности и универсальности:

— малую стоимость

— автономность эксплуатации

— гибкость архитектуры, дающую возможность адаптироваться в сфере образования, науки, управления, в быту;

— дружественность операционной системы;

— высокую надежность (более 5000 часов наработки на отказ);

По конструктивным особенностям можно классифицировать ПК так:

Стационарные (настольные)

Переносимые:

— портативные

— блокноты

— карманные

— электронные секретари

— электронные записные книжки

Большинство из них имеют автономное питание от аккумуляторов, но могут подключаться к сети.

Специальные ЭВМ

Специальные ЭВМориентированы на решение специальных вычислительных задач или задач управления. В качестве специальной ЭВМ можно рассматривать также электронные микрокалькуляторы. Программа, которую выполняет процессор находится в ПЗУ или в ОП. Т.к. машина решает, как правило, одну задачу, то меняются только данные. Это удобно (программу хранить в ПЗУ), в этом случае повышается надежность и быстродействие ЭВМ. Такой подход часто используется в бортовых ЭВМ; управлении режимом работы фотоаппарата, кинокамеры, в спортивных тренажерах.

Архитектура ЭВМ

С середины 60-х годов существенно изменился подход к созданию вычислительных машин. Вместо независимой разработки аппаратуры и некоторых средств математического обеспечения стала проектироваться система, состоящая из совокупности аппаратных (hardware) и программных (software) средств. При этом на первый план выдвинулась концепция их взаимодействия. Так возникло принципиально новое понятие — архитектура ЭВМ.

Под архитектурой ЭВМ понимается совокупность общих принципов организации аппаратно-программных средств и их характеристик, определяющая функциональные возможности ЭВМ при решении соответствующих классов задач.

Архитектура ЭВМ охватывает широкий круг проблем, связанных с построением комплекса аппаратных и программных средств и учитывающих множество факторов. Среди этих факторов важнейшими являются: стоимость, сфера применения, функциональные возможности, удобство эксплуатации, а одним из главных компонентов архитектуры являются аппаратные средства.

Архитектуру вычислительного средства следует отличать от его структуры. Структура вычислительного средства определяет его конкретный состав на некотором уровне детализации (устройства, блоки узлы и т. д.) и описывает связи внутри средства во всей их полноте. Архитектура же определяет правила взаимодействия составных частей вычислительного средства, описание которых выполняется в той мере, в какой это необходимо для формирования правил их взаимодействия. Она регламентирует не все связи, а наиболее важные, которые должны быть известны для более грамотного использования данного средства.

Так, пользователю ЭВМ безразлично, на каких элементах выполнены электронные схемы, схемно- или программно реализуются команды и т. д. Важно другое: как те или иные структурные особенности ЭВМ связаны с возможностями, предоставляемыми пользователю, какие альтернативы реализованы при создании машины и по каким критериям принимались решения, как связаны между собой характеристики отдельных устройств, входящих в состав ЭВМ, и какое влияние они оказывают на общие характеристики машины. Иными словами, архитектура ЭВМ действительно отражает круг проблем, относящихся к общему проектированию и построению вычислительных машин и их программного обеспечения. Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) — это однопроцессорный компьютер. Любая ЭВМ неймановской архитектуры содержит следующие основные устройства: арифметико-логическое устройство (АЛУ), через которое проходит поток данных; устройство управления (УУ), через которое проходит поток команд; запоминающее устройство (ЗУ), хранящее программы, данные и результаты; устройства ввода-вывода (УВВ), обеспечивающие ввод данных и команд и вывод результатов. В основу построения подавляющего большинства компьютеров положены общие принципы, сформулированные в 1945 г. американским учёным Джоном фон Нейманом:

— принцип программного управления; из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определённой последовательности;

— принцип однородности памяти; программы и данные хранятся в одной и той же памяти, компьютер не различает, что хранится в данной ячейке памяти (число, текст или команда);

— принцип адресности; структурно основная память состоит из пронумерованных ячеек, процессору в произвольный момент времени доступна любая ячейка.

Практически все универсальные ЭВМ отражают классическую неймановскую архитектуру, представленную на схеме. Эта схема во многом характерна как для микроЭВМ, так и для мини ЭВМ и ЭВМ общего назначения. Несмотря на то, что современные ЭВМ внешне не имеют ничего общего с первыми моделями, основополагающие идеи, заложенные в них и связанные с понятием алгоритма, разработанным Аланом Тьюрингом, а также архитектурной реализацией, предложенной Джоном фон Нейманом.

Рис. 1 Архитектура персонального компьютера

Процессор, или микропроцессор (МП, CPU), является основным устройством ЭВМ. Он предназначен для выполнения вычислений по хранящейся в запоминающем устройстве программе и обеспечения общего управления ЭВМ.

Память представляет собой сложную структуру, построенную по иерархическому принципу, и включает в себя запоминающие устройства различных типов. Функционально она делится на две части: внутреннюю и внешнюю.

Внутренняя, или основная память — это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях.

Внутренняя память, в свою очередь, делится на оперативную (ОЗУ) и постоянную (ПЗУ) память. Оперативная память, по объему составляющая большую часть внутренней памяти, служит для приема, хранения и выдачи информации. При выключении питания ЭВМ содержимое оперативной памяти в большинстве случаев теряется. Постоянная память обеспечивает хранение и выдачу информации. В отличие от содержимого оперативной памяти, содержимое постоянной заполняется при изготовлении ЭВМ и не может быть изменено в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы, и данные, к примеру, некоторые программы операционной системы, программы тестирования оборудования ЭВМ и др. При выключении питания содержимое постоянной памяти сохраняется.

Внешняя память (ВЗУ) предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для построения внешней памяти используют энергонезависимые носители информации (диски и ленты), которые к тому же являются переносимыми. Емкость этой памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем к внутренней.

Внешние запоминающие устройства конструктивно отделены от центральных устройств ЭВМ (процессора и внутренней памяти), имеют собственное управление и выполняют запросы процессора без его непосредственного вмешательства. В качестве ВЗУ используют накопители на магнитных и оптических дисках, а также накопители на магнитных лентах.

ВЗУ по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах). Устройства прямого доступа обладают большим быстродействием, поэтому они являются основными внешними запоминающими устройствами, постоянно используемыми в процессе функционирования ЭВМ. Устройства последовательного доступа используются в основном для резервирования информации.

Устройства ввода-вывода служат соответственно для ввода информации в ЭВМ и вывода из нее, а также для обеспечения общения пользователя с машиной. Процессы ввода-вывода протекают с использованием внутренней памяти ЭВМ. Иногда устройства ввода-вывода называют периферийными или внешними устройствами ЭВМ. Для управления внешними устройствами (в том числе и ВЗУ) и согласования их с системным интерфейсом служат групповые устройства управления внешними устройствами, адаптеры или контроллеры.

Системный интерфейс — это конструктивная часть ЭВМ, предназначенная для взаимодействия устройств и обмена информацией между ними. В больших, средних и супер-ЭВМ в качестве системного интерфейса используются сложные устройства, имеющие встроенные процессоры ввода-вывода, именуемые каналами. Такие устройства обеспечивают высокую скорость обмена данными между компонентами ЭВМ.

Отличительной особенностью малых ЭВМ является использование в качестве системного интерфейса системных шин. Различают ЭВМ с многошинной структурой и с общей шиной. В ЭВМ первого типа для обмена информацией между устройствами используются отдельные группы шин, во втором случае все устройства ЭВМ объединяются с помощью одной группы шин, в которую входят подмножества шин для передачи данных, адреса и управляющих сигналов. При такой организации системы шин обмен информацией между процессором, памятью и периферийными устройствами выполняется по единому правилу, что упрощает взаимодействие устройств машины.

Пульт управления служит для выполнения оператором ЭВМ или системным программистом системных операций в ходе управления вычислительным процессом. Кроме того, при техническом обслуживании ЭВМ за пультом управления работает инженерно-технический персонал. Пульт управления конструктивно часто выполняется вместе с центральным процессором.

Многопроцессорная архитектура — наличие в компьютере нескольких процессоров и одной оперативной памяти означает, что параллельно может быть организовано много потоков данных и много потоков команд, таким образом могут параллельно выполняться несколько фрагментов одной задачи.

Многомашинная вычислительная система — несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру.

Архитектура с параллельным процессором — несколько арифметико-логических устройств работают под управлением одного устройства управления. Это означает, что множество данных может обрабатываться по одной программе.

Статьи к прочтению:

Лекция №2 \


Похожие статьи: