Кодирование текстовой информации

      Комментарии к записи Кодирование текстовой информации отключены

Аппаратное (оптическое) разрешение

Аппаратное (оптическое) разрешение (Hardware/optical Resolution) непосредственно связано с плотностью размещения светочувствительных элементов в матрице сканера. Это — основной параметр сканера (точнее, его оптико-электронной системы). Обычно указывается разрешение по горизонтали и вертикали, например, 300×600 ppi. Следует ориентироваться на меньшую величину, т. е. на горизонтальное разрешение. Вертикальное разрешение, которое обычно вдвое больше горизонтального, получается в конечном счете интерполяцией (обработкой результатов непосредственного сканирования) и напрямую не связано с плотностью чувствительных элементов (это так называемое разрешение двойного шага). Чтобы увеличить разрешение сканера, нужно уменьшить размер светочувствительного элемента. Но с уменьшением размера теряется чувствительность элемента к свету и, как следствие, ухудшается соотношение сигнал/шум. Таким образом, повышение разрешения — нетривиальная техническая задача.

Интерполяционное разрешение

Интерполяционное разрешение (Interpolated Resolution) — разрешение изображения, полученного в результате обработки (интерполяции) отсканированного оригинала. Этот искусственный прием повышения разрешения обычно не приводит к увеличению качества изображения. Представьте себе, что реально отсканированные пикселы изображения раздвинуты, а в образовавшиеся промежутки вставлены «вычисленные» пикселы, похожие в каком-то смысле на своих соседей. Результат такой интерполяции зависит от ее алгоритма, но не от сканера. Однако эту операцию можно выполнить средствами графического редактора, например, Photoshop, причем даже лучше, чем собственным программным обеспечением сканера. Интерполяционное разрешение, как правило, в несколько раз больше аппаратного, но практически это ничего не означает, хотя может ввести в заблуждение покупателя. Значимым параметром является именно аппаратное (оптическое) разрешение.

В техническом паспорте сканера иногда указывается просто разрешение. В этом случае имеется в виду аппаратное (оптическое) разрешение. Нередко указываются и аппаратное, и интерполяционное разрешение, например, 600х 1200 (9600) ppi. Здесь 600 — аппаратное разрешение, а 9600 — интерполяционное.

Кодирование текстовой информации

Текстовую информацию кодируют двоичным кодом через обозначение каждого символа алфавита определенным целым числом. С помощью восьми двоичных разрядов возможно закодировать 256 различных символов. Данного количества символов достаточно для выражения всех символов английского и русского алфавитов.

Традиционно для кодирования одного символа используется количество информации = 1 байту (1 байт = 8 битов).

Для кодирования одного символа требуется один байт информации.

Учитывая, что каждый бит принимает значение 1 или 0, получаем, что с помощью 1 байта можно закодировать 256 различных символов. (28 = 256)

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный двоичный код от 00000000 до 11111111 (или десятичный код от 0 до 255).

Для английского языка, который является неофициальным международным средством общения, эти трудности были решены. Институт стандартизации США выработал и ввел в обращение систему кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США).

Для кодировки русского алфавита были разработаны несколько вариантов кодировок:

1) Windows-1251 – введена компанией Microsoft; с учетом широкого распространения операционных систем (ОС) и других программных продуктов этой компании в Российской Федерации она нашла широкое распространение;

2) КОИ-8 (Код Обмена Информацией, восьмизначный) – другая популярная кодировка российского алфавита, распространенная в компьютерных сетях на территории Российской Федерации и в российском секторе Интернет;

3) ISO (International Standard Organization – Международный институт стандартизации) – международный стандарт кодирования символов русского языка. На практике эта кодировка используется редко.

В настоящее время существует 5 разных кодовых таблиц для русских букв (КОИ8, СР1251, СР866, Mac, ISO).

Ограниченный набор кодов (256) создает трудности для разработчиков единой системы кодирования текстовой информации. Вследствие этого было предложено кодировать символы не 8-разрядными двоичными числами, а числами с большим разрядом, что вызвало расширение диапазона возможных значений кодов. Система 16-разрядного кодирования символов называется универсальной – UNICODE. Шестнадцать разрядов позволяет обеспечить уникальные коды для 65 536 символов, что вполне достаточно для размещения в одной таблице символов большинства языков.

Несмотря на простоту предложенного подхода, практический переход на данную систему кодировки очень долго не мог осуществиться из-за недостатков ресурсов средств вычислительной техники, так как в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое больше. В конце 1990-х гг. технические средства достигли необходимого уровня, начался постепенный перевод документов и программных средств на систему кодирования UNICODE.

Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр 0 и 1. Эти два символа принято называть двоичными цифрами или битами. С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.

Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код.

Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.

С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:

0 – отсутствие электрического сигнала;

1 – наличие электрического сигнала.

Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.

Вам приходится постоянно сталкиваться с устройством, которое может находится только в двух устойчивых состояниях: включено/выключено. Конечно же, это хорошо знакомый всем выключатель. А вот придумать выключатель, который мог бы устойчиво и быстро переключаться в любое из 10 состояний, оказалось невозможным. В результате после ряда неудачных попыток разработчики пришли к выводу о невозможности построения компьютера на основе десятичной системы счисления. И в основу представления чисел в компьютере была положена именно двоичная система счисления.

Способы кодирования и декодирования информации в компьютере, в первую очередь, зависит от вида информации, а именно, что должно кодироваться: числа, текст, графические изображения или звук.

34. Аппаратные средства получения информационной модели изображения объекта

Эволюция аппаратных средств получения информационной модели изображения объекта

Пантелеграф Казелли

Системы для сканирования изображения являются неотъемлемой частью таких устройств, как фототелеграф, телефакс, телекамера. Они существуют уже более ста лет.

В 1856 году итальянский физик Казелли (Giovanni Caselli, 1815 — 1891) создал прибор для передачи изображений, названный пантелеграфом. В этом приборе игла сканировала изображение, нарисованное токопроводящими чернилами. Приемник действовал по аналогичному принципу. Игла перемещалась по листу, покрытому крахмальным клеем с примесью йодистого калия. Когда через иголку проходил ток, крахмал окрашивался в синий цвет. Похожий принцип действия прибора описан Александром Байном (Alexander Bain, 1811(10) — 1877) в 1840-х годах, но про пантелеграф точно известно, что он был воплощен в металле, например, в России работал на линии Москва — Петербург уже 1862 году. С современной точки зрения это изобретение следует отнести к процессу фиксации электронного изображения на бумаге. Можно сказать, что 1856 год — это дата появления графического принтера с электрохимическим способом фиксации изображения. Следует отметить, что здесь мы видим одновременно и фиксацию, и визуализацию изображения. В дальнейшем, в электронной фотографии, эти два процесса очень часто будут разделены. В частности, в телевидении способы визуализации будут изобретены существенно раньше, чем способы сохранения изображения.

К современным аппаратным средствам получения первичной модели изображения объекта можно отнести оборудование, позволяющее перекодировать информацию об объекте в цифровую форму с помощью технологических процессов:

Сканирование, цифровое фотографирование, создание изображения

Сканирование

Сканирование — процесс поэлементного считывания аналоговой информации с оригинала и/или запись оцифрованного изображения в электронном виде по заданной траектории.

Сканирование — аналого-цифровое преобразование плоского изображения в цифровую растровую форму с помощью сканера.

Сканер (англ. scanner) — устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием.

Цифровое фотографирование

Цифровая фотография — фотография, результатом которой является изображение в виде массива цифровых данных — файла, а в качестве светочувствительного материала применяется электронное устройство — матрица.

Создание изображения

Графический планшет (дигитайзер, диджитайзер от англ. digitizer) — это устройство для ввода рисунков от руки непосредственно в компьютер. Состоит из пера и плоского планшета, чувствительного к нажатию или близости пера. Также может прилагаться специальная мышь.

Основными областями применения являются:

создание и редактирование изображений;

мультипликация;

оцифровывание географических карт для работы с географическими информационными системами;

инженерное проектирование;

научная визуализация.

Графические планшеты применяются как для создания изображений на компьютере способом, максимально приближенным к тому, как создаются изображения на бумаге, так и для обычной работы с интерфейсами.

Статьи к прочтению:

Кодирование текстовой информации


Похожие статьи: